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Abstract: The aim of this paper was to shown a new methodology for determining and optimal conjugated 
pair for Cauchy stress tensor. Methodology demonstrated in this work can be used for various materials 
loaded by uniaxial tension, e.g. for textiles, soft tissues etc. 
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1 INTRODUCTION 

In engineering practice, the mechanical parameters 
are usually identified in a simplified form 
as engineering stress and deformation. 
These material parameters are used worldwide 
since 19

th
 century for linear tasks. When large 

deformation presents, as in composite materials or 
others, this simplified approach cannot be used any 
more. It is necessary to define these deformations 
and stress as second order tensors that are 
energetically conjugated. It means that their double-
dot product express strain energy in the system. 

When expressing derivate quantity, e.g. Young 
moduli, according to different conjugated pairs, 
different values will be obtained [1, 2]. In view 
of the fact that the trues stress tensor is not 
conjugated with any known strain tensor, it is difficult 
to decide about suitable conjugated pair. It will be 
shown, that for uniaxial loading of the specimen it is 
possible to determine to Cauchy stress tensor 
a suitable conjugated strain tensor. 

2 MATERIALS AND METHODS 

Let we have a specimen of an anisotropic material, 
loaded by a force F1. Cartesian coordinates of points 
1-4 were determined by an optical method.  

 

 

Figure 1 Testing sample  

 

From Cartesian coordinates of points 1-4 it is 
possible to calculate displacements as: 
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where the Langragarian coordinate system is noticed 
as xi

0j
 and Euler´s coordinate system is xi

j
.  

For uniaxial type of loading (symmetrical sample) 
the equations (1) can be simplified. Displacements 
u12 and u21 are zero. Thus: 
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If we assume the lines 13 and 24 perpendicular, 
than only two equations can be used. For lower 
values of parameter x the higher scatter 
of coordinates xi

j
 is. So that the scatter 

of displacement u11 and u22 is also higher. 

Regarding the fact that the sample is slightly press-
stress at the beginning of the measurement so that 
the displacement u11, u22 will not be zero 
at the beginning of measurement too. Let´s suppose 
that displacement evaluates linearly with some 
constant k1 and k2. We can write it down as: 

��� = ���
� + ��� 

(3)
��� = ���

� + ��� 

It is clear that u11
0
 > 0, k1 > 0, u22

0
< 0, k2 < 0, 

because the sample is lengthen along line 13 and 
shorten along the line 24.  

Suppose we have a variable h as an actual 
thickness of the sample and h0 as an initial 
thickness. 
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We can write the transversal displacement as:  

ℎ

ℎ�

− 1 = ��� (4)

where u33 ≤ 0 due the thinning of the sample.  

The deformation gradient F is then: 
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If we assume initial length of sample l0, the Cauchy 
stress can be expressed by: 
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��
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 (6)

which forms the first member of Cauchy stress 
tensor: 
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Further we can write Biot´s stress tensor: 
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where R is a rotational matrix, J is a Jacobian 
and F a deformation gradient. 

In case of uniaxial loading, we simply write 
an inversion of deformation gradient as inversion 
of diagonal matrix: 
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After some manipulating with expressions, we finally 
get a formulation of Biot’s stress tensor for uniaxial 
loading: 
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Stress tensor for conjugated pairs  

In order to get a conjugated pair of stress-strain 
tensors, we define a exponent-generalization 
of different stress tensors as: 

m = 2  Piola-Kirchov 

m = 1  Biott 

m = 0  logarithmic 

m = -1  Cernych 

m = -2  Hill, Almansi 
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Since we know all members of above equation 
we can simply write down a formulation for uniaxial 
stress tensor in a generalized form: 
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this expression is valid for Cauchy stress tensor, 
but with unknown parameter m. The strain tensor 
that fulfill the term of conjugation is defined by: 
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For above mentioned parameters m, it´s necessary 
to find out power of strain tensor U, except of m=0. 
In this case numerator and denominator are zero 
(14). Calculating limit following equation is obtained: 
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Equation (15) is valid only in the case when 
augmenting deformation the main axes of the tensor 
U is not rotated. When using different values 
of parameter m we obtained following strain tensors: 
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Similarly, stress tensor S(m) might be determined: 

�(2) =
���

1 + ���

 (20)

�(1) = ��� (21)

�(0) = ���(1 + ���) (22)

�(− 1) = ���(1 + ���)� (23)

�(− 2) = ���(1 + ���)� (24)

For Cauchy stress tensor following equations 
is obtained: 
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Comparing relation (6) and (25) following equation 
is obtained 
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Parameter m is a function of thickness defined 
by (4). By substituting u11, u22, u33 by terms (3) and 
(4) a functional dependency of parameter m 
on displacement x and k3 is received: 
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Equation (28) describes formally Cauchy conjugated 
pair for uniaxial type of loading. It´s clear that 
the result is strongly influence by parameter k3.  

The requirement of dot product for equations (25) 
and (26) will be shown: 
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Theoretically the parameter “m” can reaches any 
value, but there is only one corresponds to Cauchy 
stress tensor. According to Hook law: 
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Modules E���, E��� and E�� can be found. Poisson ratio 
ν(m) depends on choice of conjugated pair.  

An invariant shear modulus E��
�(m) is given: 
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In engineering practice following expression is often 
used: 
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In our case can be found: 
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This makes a system of equations that enables 
to find out values of “m” and u33.  
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3 CONCLUSION 

When evaluating the experimental data 
of a material, usually it is performed as a uniaxial 
tension test. What is actually measured is a force 
versus displacement curve, but in order to make 
these results independent of specimen size, 
the results are usually presented as stress versus 
strain. It is interesting that most, perhaps even all, 
stress definitions can be paired with a corresponding 
strain tensor. They come in pairs such that 
the product of the two will give strain energy. 
This does not mean that the corresponding pairs 
must be used together when performing structural 
analyses. But they must be when computing strain 
energy density. In view of the fact that the trues 
stress tensor is not conjugated with any known 

strain tensor, it is difficult to decide about suitable 
conjugated pair. It was shown, that for uniaxial 
loading of the specimen it is possible to determine 
to Cauchy stress tensor a suitable conjugated strain 
tensor. Methodology demonstrated in this work can 
be used for various materials loaded by uniaxial 
tension, e.g. for textiles, soft tissues, etc.   
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