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Abstract: It is well known that the free vibrations of the sewing needle are divided to lateral free vibration 
and axial (longitudinal) free vibrations. In this study a theoretical approach will be carried out concerning 
the sewing needle free longitudinal (axial) vibrations. The work will include the sewing needle with constant 
cross-section with classical and non-classical boundary conditions and needles with variable cross-
sections - stepped - type. For all the different calculations scheme of the sewing needles, two items will be 
emphasized: the linear natural fundamental frequencies and the modal sewing needle shape (normal 
equations) and time - dependent vibratory pattern of the needle. The sewing process technology 
of the sewn fabrics has several parameters affecting the free longitudinal (axial) vibrations of the sewing 
needle as: sudden end breaks, the fabric resistance to the needle penetration: is it elastic or rigid 
or between both of them ... etc. In addition the penetrating needle force in the sewn fabric, how is it type 
of relationship with time of penetration? In this study we assumed it is as � = �� �����  i.e sinusoidal. 
The effect of the needle linear speed on the modal shape of the sewing needle was evaluated. Also, 
it has been found the frequency equation of needle axial vibration under the effect of sewing thread break.  

Keywords: Mechanical vibration; sewing needle; linear speed; axial vibrations; penetration. 

 

 

1 INTRODUCTION 

It has numbered some factors in the sewing 
technology that have an influence on the vibrations 
pattern & their exciting of the sewing needle 
as the impact action between the needle tip and 
the sewn fabric before its penetration inside 
the fabric, the sudden leave (high speed) leave 
of the needle to the fabric surface, the sudden 
unexpected sewing threads breaks, the sewn fabrics 
movements, the resistance nature of the processed 
fabric to the needle penetration or the nature 
of interaction between the sewn fabrics and 
the swing needle, …etc. [1]. It has stated that 
the transfer of the industrial sewing needle from 
a bar with variable cross-section to a bar with 
constant cross-section could be carried out 
by applying the weighted average technique with 
percentage error 1% [2]. In addition, they mentioned 
the lowest linear natural lateral frequency for 
the sewing needle is ranging from 22 k to 180 k 
SPM [2]. Also, they reported that the first 
fundamental linear natural frequency of the lateral 
free vibrations of the sewing needle is too sufficient 
practically [2]. In his work has explained 
the vibrations of the continuous media; transverse 
vibrations of beams, orthogonality principle, torsional 
vibrations,…etc. [3]. Also, he studied the nonlinear 
vibrations, free undamped vibrations with nonlinear 
restoring forces, forced undamped vibrations with  

nonlinear restoring forces, self-excited vibrations 
and stability [4]. The elastic vibration of the different 
machine elements has been studied theoretically 
and experimentally by several authors as [5-10]. 
Referring to the vibrations of the textile machines 
elements, many authors and scientist have 
introduced works as [11-14],…etc. 

2 THEORETICAL APPROACH 

For the sewing needle with constant cross-section 
(Figure 1), the linear fundamental natural frequency 
is calculated by formula: 

�� =
(2� − 1) �

2ℓ
�
�

�
 (1) 

where: i - variable = 1, 3, 5,…etc.;  - const. = 3.14;          

ℓ - needles length; E - needles material (steel) elastic 

modulus of elasticity = Young’s modulus = 206 GPa;         
 - needles material (steel) density = 7850 kg.m

-3
. 

The general expression for longitudinal vibrations is: 

�(�,�)= � sin
���

2ℓ
���,�,�,..

��� cos
����

2ℓ
+ �� sin

����

2ℓ
� (2) 

where: U(x,t) - longitudinal vibrations of the sewing needle 
as a function of needle general distance x & time t 

of vibrations (instantaneous); ℓ - needles length,           

� = �� �� . 
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Taking into consideration the actual sewing needle 
database that mentioned in the work [4] then we can 
find: 

�� =
(2 ∗1 − 1) � �

2ℓ
=

=
 � 

2ℓ
�
�

�
=

 � 

2 ∗0.045
�
206∗10�

7850
      (� = 1) 

= 34.8889× 5122.6 = 1787250  ��� (��) 

= 107235∗10� ���  ≅ 107 � .���  

 

 

Figure 1 A sewing needle with constant cross-section;     
A - cross-sectional area CSA = const.;  - needle diameter 

3 FACTORS AFFECTING THE LONGITUDINAL 
VIBRATIONS OF THE SEWING NEEDLE 
WITH CONSTANT CROSS-SECTIONS 

3.1 The sewn thread in the needle eye is 
suddenly ended down 

This is taken place, usually, when ends down 
of the thread is happened. The rate of ends down 
during the sewing process is a bout 20-25 per (E+5) 
stitches [1]. From Figure 2a we can write the general 
longitudinal vibration of the sewing needle is: 

�(�,�)=
8 � ℓ

��
�

(−1) (� − 1)�

��

�

���,�,�,..

∗sin
���

2ℓ
∗cos

����

2ℓ
 (3) 

where: U(x,t) - function of x (needle general length),           

t - time (depend, on initial conditions), ℓ - needle length;    
ϵ - needles strain due to thread tension ; i - variable i=1, 3, 
5, 7,… 

The linear natural fundamental frequency is 
calculated by: 

 �� =
� �

2ℓ
.� =

� �

2ℓ
�
�

�
 (4) 

For i=1, first mode of free vibration 
�� ≅ 110 � .���  ≅ 110 � .��� , 

where: �� = �
�

�
�, (� = 1,3,5,… ) and M - mega.  

 

3.2 The sewn fabrics resistance to the needle 
penetration is ∞  

In this case the lower free needle end will be treated 
as a built-in end as shown in Figure 2b.  

The normal function that graphs the modal shapes is: 

�(�)= � ��

�

���,�

��� sin�
��
�� � ∗�� (5) 

where:  

� = �����.= �� �⁄  (6) 

E - needles material Young’s modulus (steel);  - needles 

material density (steel); fi - natural frequency = � ��
ℓ� ;     

Ti - period in sec; X - needle length in general position. 

The equation (5) can be reformatted:  

�(�)= �� .sin�
� ��

ℓ� �      (� = 1,2,3,… .) (7) 

For � = ℓ,�(ℓ)= 0 

0 = ∑ ��
�
���,� ��� sin�

��
�� � ∗��. 

The linear fundamental natural frequency of the 
needle is: 

�� =
� �

ℓ
�
�

�
 (8) 

where:  I = 1, 2, 3,… 

3.3 The sewn fabrics resisting elastically 
the needle penetration i.e. they have spring 
effect (spring const. S) 

The frequency equation of the sewing needle shown 
in Figure 2c is: 

tan�
�� ℓ

�
� = −

� � ��
�  �

 (9) 

where: fi  - natural linear frequency of the needle;               
l - needle length 

� = �� �⁄  (10) 

A - needles cross-sectional area; S - spring stiffness 
(const.) due to elastic resistance of the fabric to needle 
penetration; E - steel Young’s modulus = 206 GPa. 

For actual needle [4] � = � (0.89 ∗10��)� 4⁄ =
6.218∗10��;  � = 16317,ℓ = 0.045 � 

then tan�� �
 ℓ

�
� = −

� � ��

�  �
  and: 

��� �� × 2.7579∗10�� = −
6.218∗10�� × 206∗10� ��

16317 ∗ �  
 

 

                  = − 7.8501�
��
�� � 

(11) 

N.B: 

If spring stiffness S is very small compared to that 

of the needle, then tan�
 ��ℓ

�
� = ∞   

then ��
 ℓ

�
=

� �

�
,     � = 1,2,3,… . and � =

� � �

�ℓ
  (normal 

function for axial vibration of uniform sewing needle 
with one end (upper end) fixed built-in & the lower 
end is free. 
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N.B: 

The final equation of the natural frequencies - 
frequency equation is: 

��� �� × 2.7579∗10�� +  7.8501
 ��
 �  

= 0 (12) 

The solution of equation (12) will give frequency fi 
as a function of fabric elastic resistance S. 

3.4 The effect of the sewing needle penetration 
speed V on its axial vibrations 

To facilitate the theoretical approach we will assume 
that the sewing needle is built-in from both of upper 
end & lower end (see Figure 2b) while it moves with 
linear speed V during sewing process the needle 
speed could be calculated from the 4-bar 
mechanism or slider-crank mechanism or any 
mechanism that drives the needle. 

The final longitudinal vibrations of the sewing needle 
(constant cross-section) are: 

�(�,�)=
4 �ℓ 

���
∗ �

1

��
sin

� � �

ℓ

�

���,�,…

sin
� � � �

ℓ
 (13) 

The natural frequency is governed by: 

�� =
� �

ℓ
�
�

�
 (14) 

The formula different items are defined previously. 

3.5 The effect of the sewing needle extension 
due to sewing thread tension- on the axial 
vibrations when the thread breaks: 

As shown in Figure 2d, the original needle length 
is ℓ when extended as a result of sewing thread 
tension, the length will be ℓ�. The axial vibration 
of the needle is governed by formula: 

�(�,�)=
8(ℓ� − ℓ) 

��
∗ 

∗ �   (− 1)(���) �⁄ ∗sin
� � �

2ℓ

�

���,�,…

cos
� � � �

2ℓ
 

(15) 

where: U(x,t) - longitude elongation of the needle 
at general distance x and time t; ℓ - needle free length;     
ℓ� - extended needle length due to sewing thread tension; 
i - variable 1, 3, 5, …etc. 

The natural frequency fi is: 

�� =
� �

2ℓ
�
�

�
 (16) 

where: fi - linear natural frequency of the sewing needle; 
�,ℓ,�,� - defined previously. 

As mentioned previously, for the first mode of free 
vibrations (i-1), then �� is as mentioned previously 
�� ≅ 110 � .��� . 

 

 

3.6  Effect of penetration force as time 
independent on axial vibrations - Gorman [6] 
technique 

The linear fundamental natural linear of sewing 
needle frequency f is: 

� =
��

2���
�
� �

� �
 (17) 

where: � - Eigen value special graph [6]; L - Needle 
length; E I - sewing needle bending stiffness; I - sewing 
needles area moment of inertia of cross-section;                
A - needle cross-sectional area. 

To calculate � from special graph [6] we need 

∝ =
���.�

�

� � �
 , 

 

� = �
�� ∝

2
+ �

�� ∝�

4
+ �� (18) 

� = �
−�� ∝

2
+ �

�� ∝�

4
+ �� (19) 

��  - special graph (3) (20) 

The modal shape of the sewing needle as a function 
of (�) is:  

�(�)= sin��−
�

�
sin��+  

+
sin� −

�
�
sin�

cosh� − cos�
[cos��− cosh��] 

(21) 

where �� =
�

�
�, � - variable distance on the needle axis  

and 0 ≤ � ≤. 

The database of actual sewing needle 
of an industrial sewing machine is: L = 0.045 m; 

ᵠ = 0.89.10
-3

 m; E = 206 GPa; =7850 kg.m
-3

; 
A = 6.2180 (E-7) m

2
; ℓxA = 4.8811 

��=
206∗10� × � × (0.89∗10��)�

64
= 6.3413 (� − 3) 

To calculate eigenvalue �, we need: 

∝ =
���.�

�

� � �
=

62× (0.045)�

� × 6.3413∗10��
= 0.2837,  

Critical load Pcr.=62 N [4] 

� = �
�� × 0.2837

2
+ �

�� × (0.2837)�

4
+ �� 

Then  � = �1.400003+ �1.9600094+ �� 

� = �
− �� × 0.2837

2
+ �

�� × (0.2837)�

4
+ �� 
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Then � = �−1.400003+ �1.9600094+ �� 

Then   � ���⁄ = 0.98,         

��� = 3.927  (� = 1)  
= 7.069  (� = 2) 
= 10.210  (� = 3) 
= 13.352  (� = 4) 

Then    �� = 0.98 × 3.927 = 3.8485          (� = 1)   

and     �� = 0.98 × 7.069 = 6.92762        (� = 2)   

The first natural frequency ��: 

�� =
��

2���
�
� �

� �
 =

(3.8485)�

2 � (0.045)�
×  �

6.3413∗10��

7850 ×  6.2180∗10��
 

= 6.2618     ���   (��)= 375.7     ���  

The second natural frequency ��: 

�� = 20.2901 ��� (��)= 1217.4 ≅ 1200 ���  

The third natural frequency ��: 

�� = 0.98 × 10.210 = 10.0058 

�� = 42.327 ��� (��)= 2539.6 ≅ 2540  ���  

The fourth natural frequency ��: 

�� = 0.98 × 13.352 = 13.085 

�� = 72.3875 ��� (��)= 4343.3 ≅ 4340 ���  

If the average working speed of the sewing machine 
is 3k SPM, then 0.7 × 4343.3 = 3040.3 ���  that 
satisfies the safe running. 

 

 

 

 

Figure 2 Different calculations schemes (line diagrams) of the sewing needles - constant CSA - for different cases 
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3.7 The effect of the penetration sewing needle 
force as time dependent on its longitudinal 
vibration 

During the needle penetration into the sewn fabrics 
layers, starting from the upward to downward, it will 
take certain time. We will assume that 
the penetration force changes with time by 
a sinusoidal relationship as follow (see Figure 2e). 

� = �� sin��  (22) 

As shown in Figure 2e, the forced vibrations 
of the sewing needle are: 

�(�,�)=
�� �

� � �
× sec

�ℓ

�
× sin

��

�
× sin��  (23) 

where:  - penetration force frequency (linear); �,ℓ,� & � - 
defined previously. 

The natural frequency �� is: 

�� =
� �

2ℓ
�
�

�
,        � = 1,2,3… . (24) 

where: �� - linear natural frequency of the sewing needle; 
�,ℓ,�,� - defined previously. 

When both of the penetrating force frequency and 
the needle natural frequency are equal, we will have 
a resonance at which the axial extension 
of the needle is ∞ . Therefore we must select 
the working speed in the range: 

0.7 ���� ≥ �� ≥ 1.4 ����. (25) 

When ��, it is named critical linear frequency 
���� = 110 (� + 3) ���  for first mode of vibration 
(� = 1). 

3.8 Effect of the sewn fabric on supporting 
the free needles end (lower end) 

Previously it was mentioned that the fabric during 
the sewing process can make different supporting 
actions or types on the lower end of the needle. 
These supports can be elastic (coil spring) or rigid 
(complete built-in). Now we will assume the sewn 
fabric will be intermediate between elasticity and 
rigidity i.e. the lower end of the needle will be simply 
supported as shown in Figure 2f. We studied this 
case previously - by the use of Gormens Eigen 
value [6].  

3.9 Effect of concentrated mass at the lower 
end of the needle on axial vibration 

We can apply Panovko [5] formula: 

�� = �
��

��ℓ �1 +
�
3
�
= �

128091

3.2943∗10�� �1 +
�
3
�
= 

= �
3.8877∗10��

 �1 +
�
3
�

= 197172

�1 +
�
3
�
�
���  

� = 0.10 … 10 
�� = 190812 �� ≅ 191 ���, � = 0.10 
�� = 94718 �� ≅ 95  ���,             � = 10 

Take (� = 0.3)  

�� = 187996∗10�� �� ≅ 188 ��� = 5 ���� , 

� = 0.3 

N.B: 

� = � � ℓ �� =
���� �� ������

��

�  

3.10  Effect of sewing needle penetration force 
on its - for interesting only - lateral 
vibrations 

In this case the needle is subjected to axial load Pcr., 
the combined frequency is calculated by see 
Figure 2h: 

 �� =
0.562

ℓ�
�
� �

� �
 �1 −

5 ���.× ℓ�

14 ��
� (26) 

where:  �� - combined linear natural fundamental 
frequency due to lateral and axial vibration (it is the first 
mode of combined vibration), ℓ - sewing needle length; 
�� - bending stiffness of the needle (Young’s modulus 
E = 206 GPa; I - area moment of inertia of the needle 
cross-section); � � - mass per unit length of the needle  
(� - steel density � = 7850 �� ��,⁄  A - needles cross-
sectional area); ���. - the Euler elastic axial load at which 
the needle loses its straight form. It will be taken 62 N for 
the actual needle as shown in the work [2]. 

The sewing needle (actual) has the following 
database: length ℓ = 0.045 �, diameter � = 0.89 ∗
10�� � (mean value for constant cross-section 
needle), material of the needle is steel and 
the critical load ���.= 62 � [4]. 
Taking into consideration the previously mentioned 
database, we can write: 

 �� =
�.���

(�.���)�
�

���∗��� × � × (�.��∗����)�×�

�� ×���� × � ×(�.��∗����)�
 ×

× �1 +
��×(�.���)� ×��

�� × ���∗��� × � × (�.��∗����)�
�
  

= 316.323 ��� (��)= 18980 ���  ≅ 19 � ���  

This relative low value is due to the presence 
of the penetration force. 

3.11 Pisarenko [7] technique for different cases 
of sewing needle with constant cross-
section area CSA, (axial vibrations) 

The Table 1 has three columns: 

a) First column describes the scheme of calculation 
or line diagram of sewing needle. 

b) Column 2 gives the modal shape equation. 

c) Column 3 illustrates the fundamental frequency 
of the sewing needle axial vibration. 
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Table 1 Sewing needles line diagram and natural linear frequency 

Scheme or line diagram Frequency equation �� 

 

sin�ℓ 

= 56919 �� = 545 ����  

�ℓ = ��,   � = 1,2,3,…  

 

cos�ℓ 

= 28459 �� ≅ 28 ��� = 268 ����  

��ℓ =
�(2� − 1)

2
,� = 1,2,3,…  

 

sin�ℓ 

= 56919 �� = 57 ��� = 545    ����  

�ℓ = ��,   � = 1,2,3,…  

 
S - Spring const. of sewing fabric 

tan�ℓ = −
�ℓ

∝�
\
 

From graph 

∝�
\
= 0, 

� = 1000 � �,⁄  

� = 0.89 �� 

�� = 27191 �� = 27 ��� 

= 257962 ��� ≅ 258 ����  

 

�ℓ tan�ℓ = ∝\ 
 

∝\=
� � ℓ

�
 

∝\=
� � ℓ

�
,   � =

1

3
 � � ℓ 

 
∴ ∝\= 0.3 − �� ����ℎ,  ��ℓ = 0.52 

 

∝\=
7850× (0.89∗10��)� × 3.14× 0.045

9
 

 
≅ 0.01,      ��ℓ = 0.10 

 
�� = 56919 �� ≅ 57 ��� ≅ 545 ����  

 

 

In the following section the sewing needle with 
variable cross-section will be constant. 
For the stepped sewing needle -2 sections- 
the linear fundamental natural frequency of axial free 
vibrations is determined by the solution of the next 
frequency equation: 

tan��� 
ℓ�
��
� × tan��� 

ℓ�
��
� =

��
��

 (27) 

where: �� - natural frequency of free axial vibrations; 
ℓ�, ℓ� &�� - see Figure 3; ��,�� - sewing needle cross-
sectional area at the upper and lower sections 
respectively. 
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The solution of formula (27), we can find: 

�� = 1.89,�� = 4.53, �� = 7.85, �� = 11.2 

�� =
1.89

ℓ
�
206∗10�

7850
= 215153 �� = 215 ��� 

= 6.0 �  ���  

Assume: �� = 45 ��,   ℓ� = 40% �, ℓ� = 60%  �� 
of total length (��) 
 

 

Figure 3 Stepped sewing needle 

The database of the actual needle is: 

�� = 1.5 ∗10�� �, �� = 0.8 ∗10�� � 

ℓ� = 0.015 �, ℓ� = 0.025 � 

�� = 7.065∗10��, �� = 5.024∗10�� 

∴
 ��

��
�  = 14.0625 

The frequency equation of the sewing needle is: 

tan3.0643∗10���� ×  

× tan1.532∗10���� − 14.0625= 0 
(28) 

By solving equation (28) we can obtain value �� and 
consequently linear natural frequency of longitudinal 
vibrations of the sewing needle. 

For another approach for the stepped needle 
(see Figure 4) as written in Paramarev work [9]; 
the transcendental frequency equation is: 

cos
�ℓ�
�

× cos
�ℓ�
�

=
��
��

sin
�ℓ�
�

× sin
�ℓ�
�
  (29) 

By assuming: 
�ℓ

�
= � (30) 

Then, we can write:   
��

��
tan�

ℓ�

ℓ
�� = �tan

ℓ�

ℓ
��

��

 

or    
��

��
tan�

ℓ�

ℓ
�� × tan�

ℓ�

ℓ
�� = 1 

i.e. 
tan�

ℓ�
ℓ
�� × tan�

ℓ�
ℓ
�� =

��
��

 (31) 

There is a similarity between both of equations (27 & 
29). The graphical solution of equation (31) is shown 
in Figure 5.  

The values of �� (���) are �� = 1.89, �� = 4.53, 

�� = 7.85,�� = 11.2 . 

 

 
Figure 4 A stepped sewing needle 

From formula (30) we can write: 

�� =
� �

ℓ
∗� =

� �

ℓ
�
�

�
 (32) 

where: � - varies from 1, 2, 3, …n, �� - natural linear 
frequency of the sewing needle (two-sections) axial 
vibrations, �� - constant has different values from graphical 
solutions of equation (29) as mentioned previously,           
ℓ - total length of the needle, E - Young’s modulus 
of the sewing needle material (steel) = 206 GPa and         
� - sewing needle material density (steel) = 7850 kg/m

3
. 

From database of the sewing needle; 

�� = 0.8 ∗10�� �, �� = 1.5 ∗10�� �,   

ℓ = 0.040 �, � = 206 ���, � = 7850 �� ��⁄ ,  

�
�

�
= 5122.69 

�� =
1.89

0.040
× 5122.69 = 0.242 �� = 14.523.10� ���  

= 15 �  ���   

If we consider that the maximum allowable running 
speed of the industrial sewing machine is 15 k SPM, 
then the ratio will be 0.1033. This means that 
the running speed of the industrial sewing machine 
is too far from resonance i.e. too safe working 
speed. Practically the average running speed 
of the industrial sewing machines in the Garment 
industry is 3000 RPM. It is not necessary 
to calculate the higher linear natural frequencies 
i.e. ��, ��& ��. 
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Figure 5 Graphical solution of equation (31) [9]. Legend: curve 1) cot�
�

�
 ��; curve 2) 

�

�
tan�

�

�
 �� 

 
 
4 CONCLUSIONS AND FUTURE VISIONS 

From the previous theoretical and mathematical 
approaches of the sewing needles axial vibration 
the following conclusions and future visions can 
be drawn out: 

1) The linear natural fundamental frequency 
for the sewing industrial needle is ranging 
from 19 k SPM (sewing needle is subjected 
to lateral vibrational) to 110 M. SPM (axial) 
depending upon other sewing needle 
engineering conditions (needles speed, 
sewing thread sudden breaks,…etc.). 

2) The ratio between the highest linear 
frequency and the lowest linear natural 
frequency is 5789 ≅  6 k rimes. 

3) The first linear fundamental natural 
frequency is too high with respect to 
the sewing needle working speed. 

4) For most geometrical engineering conditions 
of the sewing needle, the following constant 
(�) is valid in calculation the first mode 

of needle axial vibration: � = �
�

�
 

where: E - steel needles material Young’s 
modulus = 206 GPa, � – sewing needle material 

density (steel) = 7850 kg/m
3. 

5) The sewing stepped needle - two sections, 
natural linear axial frequency depend 
on the ratio of the cross-sectional areas 

at the upper end (built-in end) and the lower 
free-end.  

6) The dealing - mathematical - with the sewing 
needle as a massive-less bar gave natural 
frequency for its longitudinal vibration = 30 k 
SPM. 

7) The actual linear frequency equation for 
the sewing stepped needle (two-sections) is 

tan3.0643∗10�� �� × tan1.532∗10���� −  

−14.0625= 0 

where, �� - the linear natural frequency 
of a stepped needle due to axial vibrations. 

8) The frequency equation of the sewing needle 
(axial vibrations) with elastic resistance from 
the sewn fabric via spring constant is 

tan�� × 2.758∗10�� + 7.8501�
��
�
� = 0 

9) The sewing needle modal formula for axial 
vibration taking into consideration its linear 
speed V is 

�(�,�)

=
4 �ℓ 

���
∗ �

1

��
sin�

 � �

ℓ
�

�

���,�,…

sin�
� � � �

ℓ
� 

10) Most of the studied needles’ configurations 
with their different geometrical – massive 
characteristics have equation of modal 
shape of free vibrations starting from the first 
mode to n

th
 mode. 
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11) The sewn fabric is neither pure elastic 
material nor pure rigid (stiff) i.e. the expected 
sewn fabric spring constant S is ranging from 
S = 0 complete free ends (F-F) to S = ∞ 
complete fixed end (C-C). Accordingly, 
in between both of these cases we can 
consider the lower end of the sewing needle 
is varying from a simply supported 
to a completely fixed. 

12) The axial natural fundamental frequency 
of the sewing needle (as a complete - fixed 
upper end while its lower end is simply 
supported) is ranging from �� = 376 SPM 
to  �� = 4343 SPM. 

13) Seemingly, the mathematical approach 
for the axial free vibration of the sewing 
needle as a bar with built-in upper end and 
simply support at its lower end, can give 
satisfied linear natural frequency. 

14) The ratio between the needle working speed 
(3 k RPM) and the fourth natural frequency 
(4343 CPM) is 0.691≅  0.7, that satisfies 
condition of formula (25). 

The future vision could be summarized 
as follow: 

15) The elasticity of the sewing fabrics - in multi 
directions - (spring constant S) must be 
determined experimentally and intensively 
by using innovated techniques. 

16) More attentions must be paid to the model 
shapes of the sewing needle vibrations, 
especially for the sewing needle with variable 
cross-sections. The same high attentions 
must be paid for these needles for calculating 
their natural linear frequencies at different 
modes. 

17) Both of the sewing needle internal damping 
for vibrations and the fabric resistance 
as frictional - dry or wet - damping 
for the vibration are highly interested. 
For needles material internal damping, 
it could be assumed that �� = ��� + � � ̇
where, C - is the internal sewing needle 
damping coefficient.  
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