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Abstract: The biodegradable polymer, polylactic acid (PLA), is becoming more and more popular with 
manufacturers and traders in an effort to save our planet from plastic contamination. Pure or modified PLA 
is used in a variety of industrial areas, including fibres. Depending on the stereochemistry of the main 
chain, PLA can be partially crystalline or completely amorphous, from which its processing properties and 
method of use also depend. In this work the PLA of Luminy LX175 type was used. This PLA is a high 
viscosity, low flow, amorphous and transparent PLA resin suitable for film extrusion, thermoforming and 
also for fibres spinning. The influence of spinning temperature, PLA melt dosing and drawing on the basic 
parameters of the supramolecular structure (birefringence, sound speed and crystallinity), fineness and 
basic mechanical properties of fibres (Young's modulus, tenacity and elongation at break) were studied. 
It was found that the above-studied parameters have a significant effect on the evaluated properties 
of fibres. 
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1 INTRODUCTION 

The development of the bioplastics industry has 
changed dramatically since the early 1990s. 
The latest generation is moving towards durable 
bioplastics with a high content of biological 
materials. The main goal is to replace "fossil carbon" 
with "renewable carbon", a holistic strategy to 
mitigate climate change by minimizing the product's 
impact on the environment during its life cycle. 
Durable bioplastics are in demand for multiple long-
term uses in the automotive, food biomedical but 
also textile industries. The preference for "renewable 
carbon" over "fossil carbon" stems from the very 
awareness of our need to reduce the consumption 
of non-renewable resources and greenhouse gas 
emissions [1, 2]. The current pandemic situation also 
supports the growing global demand for personal 
protective equipment such as masks, gloves, gowns 
and bottled hand sanitiser, leading 
to the accumulation of solid polymer waste [3-5]. 
The search for materials with similar technical 
plastics that come from renewable sources is 
becoming a reality in the 21

st
 century. Although there 

are already several bio-based technical plastics 
available on the market, the aim is to take 
advantage of the price competitiveness and unique 
properties of polylactic acid (PLA). PLA offers 
unique properties of biodegradability, 
biocompatibility, thermoplastic processability and 
ecological safety [6-8].  

PLA was discovered in the 1920s by Wallace 
Carothers the scientist who invented nylon, but 
at this time never had been successfully 
commercialized on a large scale. PLA is aliphatic 
polyester, due to the ester bonds that link 
the monomeric units generally producing a lactic 
acid synthesis that can be produced from renewable 
sources such as corn, starch, sugar or other 
biomass [9, 10]. It is high-potential biodegradable 
thermoplastic polyester due to its unique physical 
properties, making it useful in a variety 
of applications, including surgical and medical 
applications, fibres, films and packaging. PLA is 
naturally degraded by an in situ hydrolysis 
mechanism: water molecules break the ester bonds 
that form the polymer backbone. PLA serves 
as an alternative to certain petroleum-based plastics 
in commercial applications. At present, there is 
a comparable price on the market to commonly 
available plastics such as polypropylene [2, 6]. 

PLA fibres are produced using lactic acid 
as a starting material, which comes from 
the fermentation of various sources of natural 
sugars. PLA fibres are used to provide low moisture 
absorption and high rise by capillary for sports and 
performance clothing and products. They have 
a high resistance to ultraviolet light, which is 
beneficial for outdoor use of furniture and 
furnishings. In addition to coming from renewable 
sources every year, PLA fibres are easily melted 
and offer production benefits that lead to greater 
consumer choice 11, 5. 
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The paper presents the results of a study 
of the PLA, type Luminy LX175, specifically 
the influence of spinning temperature, PLA melt 
dosing and drawing on the supermolecular structure 
parameters and basic mechanical properties 
of prepared fibres.  

2 EXPERIMENTAL AND METHODS 

2.1 Materials 

Polylactic acid LX175 (PLA) produced by Total 
Corbion PLA B.V with MFI = 12.8 g/10 min 
(210°C/2.16 kg) was used.  

2.2 Fibre preparation 

The samples of PLA fibres were prepared using 
the classical discontinuous process of spinning and 
drawing. The laboratory discontinuous line had 
an extruder with a diameter of 32 mm, with 
a discontinuous one-step drawing process. PLA 
biopolymer has been dried before spinning for 
4 hours at 85°C. The fibres were prepared at two 
spinning temperatures of 210°C and 220°C with 
a final spinning process speed of 1500 m/min. 
Subsequently, the fibres were drawn to a drawing 
ratio of =1.4, 1.6 and maximum drawing ratio max,, 
at a drawing temperature of 100°C and a final 
drawing process speed of 100 m/min. Two 25 holes 
spinning nozzles were used for spinning, with 
a diameter of nozzle hole 0.26 mm. The two different 
dosage amounts of polymer melt 34.7 g/min and 
22.5 g/min during spinning were used. Under 
the above conditions, samples of PLA fibres 1-16, 
which are listed in Table 1, were prepared.  

Table 1 The samples of PLA fibres prepared from 
biopolymer Luminy LX175 

Sample 
No. 

Dosage of polymer melt 
g/min/nozzle 

Temperature 
°C 

Drawing ratio  

1 34.7 210 undrawn 
2 34.7 210 1.4 
3 34.7 210 1.6 
4 34.7 210 1.68 

5 34.7 220 undrawn 
6 34.7 220 1.4 
7 34.7 220 1.6 
8 34.7 220 1.88 

9 22.5 210 undrawn 
10 22.5 210 1.4 
11 22.5 210 1.6 
12 22.5 210 1.66 

13 22.5 220 undrawn 
14 22.5 220 1.4 
15 22.5 220 1.6 
16 22.5 220 1.88 

 

2.3 Methods used 

Melt Mass-Flow Rate (MFR) of PLA was evaluated 
using a capillary rheoviscosimeter Dynisco Kayness 
according to EN ISO 1133-1 under conditions: 
a temperature: 210°C, a load of 2.16 kg, a detention 
time of 5 min, nozzle diameter of 2.095 mm, 

a nozzle length of 8.00 mm, shear stress 
of 19.5 kPa. The sample has been dried before 
measurement 4 hours at 85°C. 

Birefringence 

The orientation of macromolecular chains in fibre 
expresses the level of anisotropy of the oriented 
polymer system (fibre). The total orientation 
of prepared modified PLA fibres was evaluated 
using polarization microscope DNP 714BI. 
The refractive indexes of light in the fibre axis (n) 
and in the perpendicular direction of fibre (n) were 
determined. From the difference of refractive 
indexes of light, the fibre birefringence (n) was 
calculated. 

The sound speed in fibres is given as the ratio 
of fibre length and time needed for the transfer 
of acoustic nodes across this length (expressed 
in km.s

-1
). It is dependent on the internal structure 

of fibre arrangement and is served as a measure 
of fibre anisotropy. The sound speed in fibres was 
measured by Dynamic Modulus Tester PPMSR. 

Crystallinity  represents the crystalline portion 
of fibre which may be evaluated using various 
methods. In this work the DSC-Q20 apparatus, 
TA Instruments was used for the evaluation 
of the thermal properties of PLA fibres. The non-
isothermal process of analysis was performed. 
All samples of PLA fibres were heated by rate 
of 10°C.min

-1
 from 60 to 200°C under nitrogen flow. 

From melting endotherm of 1
st
 heating of PLA fibres 

the cold crystallization enthalpy (ΔHcc) and 
the melting enthalpy (Hm) were determined. 

The crystallinity  of PLA was calculated according 
to the following equation 1:  

� =
∆�� − ∆���

∆��,�

 ∙ 100 % (1) 

where: Hm,0 is the melting enthalpy of a 100% crystalline 
PLA (93.6 kJ.kg

-1
) 12. 

Mechanical properties were measured using Instron 
3345 equipment (USA) with a gauge length of 250 
mm and clamping rate of 250 mm.min

-1
. An average 

of at least 10 individual measurements was used for 
each fibre. The mechanical characteristics (tenacity 
at the break, elongation at break and Young's 
modulus) were determined according to EN ISO 
2062 and fineness according to the STN EN ISO 
2060. 

3 RESULTS AND DISCUSSION  

The spinning of the studied type PLA biopolymer 
Luminy LX175 on two 25 holes spinning nozzles 
at a dosage of PLA melts 34.7 g/min per nozzle was 
at both spinning temperatures 210°C and 220°C 
at the standard level. Also, the spinning processes 
with dosing PLA melt 22.5 g/min per nozzle were 
satisfactory at both temperatures without interrupting 
the flow of the polymer stream under the nozzle.  
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Table 2 Supermolecular structure parameters of PLA fibres 

Sample 
No. 

Dosing and 
spinning temperature 

Birefringence 
n.103 

Vkn 
[%] 

Sound speed c 
[km/s] 

Vkc 
[%] 

Crystallinity 
 

1 
34.7 g/min 

 
210°C 

8.19 2.66 1.66 2.41 0.143 
2 17.91 2.98 1.81 2.34 0.265 
3 19.83 2.11 1.95 2.31 0.298 
4 24.41 1.94 2.05 2.53 0.314 

5 
34.7 g/min 

 
220°C 

6.52 2.08 1.62 1.93 0.129 
6 13.78 3.17 1.75 2.04 0.249 
7 19.02 3.00 1,84 1.91 0.264 
8 23.57 1.34 1.94 2.61 0.304 

9 
22.5 g/min 

 
210°C 

7.78 2.74 1.70 1.92 0.160 
10 16.41 2.70 1.94 2.71 0.301 
11 22.08 1.99 2.00 2.66 0.314 
12 22.35 2.04 2.08 1.97 0.347 

13 
22.5 g/min 

 
220°C 

5.59 2.91 1.59 1.97 0.131 
14 13.14 3.09 1.79 2.08 0.231 
15 17.22 3.45 1.86 2.28 0.250 
16 22.18 3.18 1.97 2.15 0.264 

 

 

The drawing of the fibres to a drawing ratio of 1.4 
and 1.6 was reliable, without break, at both higher 
and lower dosing of the melt during spinning. 
A drawing to the maximum drawing ratio, only 
samples spun at 220°C showed a standard level. 
The samples spun at 210°C showed deterioration, 
with occasional fibre break during unidirectional 
deformation (drawing). 

First, the structure of PLA fibres prepared from 
biopolymer Luminy LX 175 was studied. The results 
of supermolecular structure parameters are listed 
in Table 2. The change of spinning temperature, 
i.e. increasing the temperature from 210°C to 220°C, 
affects the supermolecular structure parameters. 
The effect of the spinning temperature of the PLA 
biopolymer on the supermolecular structure 
parameters was compared under the same dosing 
of PLA melt per nozzle. It was found that increasing 
the temperature from 210°C to 220°C reduces all 
structure parameters of undrawn fibres (Table 2).  

For fibres 1-8 with a melt dosage 
of 34.7 g/min/nozzle, the total average orientation 
of macromolecular chains (birefringence) decreases 
by 20%, while for fibres 9-16 with a melt dosage 
of 22.5 g/min/nozzle there is a decrease of 28%. 
The decrease in the orientation of macromolecular 
chains in surface areas (sound speed) 
in the spinning field at the spinning speed 
of 1500 m/min did not exceed 10% in both cases 
of PLA melt dosing during spinning. At the same 
time, with increasing spinning temperature, 
a decrease of crystallinity at 10% in fibres 1-8 with 
a melt dosage of 34.7 g/min/nozzle and at 18% 
in fibres 9-16 with a melt dosage of 22.5 
g/min/nozzle was observed. As the drawing ratio 
increases, the parameters of the supermolecular 
structure increase proportionally, as we can see 
in Table 2. The effect of different PLA melt dosing 
on the parameters of the supermolecular structure 
at the same temperatures was not clearly evident 

in the fibres. Slight deviations were noted, but in 
most cases they did not exceed 10%. 

The spinning temperature also affects the process 
of uniaxial deformation of the fibres - drawing. 
A higher maximum drawing ratio (λmax=1.88) was 
achieved for fibres prepared at a spinning 
temperature of 220°C, independent of the PLA melt 
dosing, which is due to the higher mobility 
of macromolecular chains and their segments 
at higher temperatures. 

The reduction of the PLA melt dosing from 
34.7 g/min per nozzle to 22.5 g/min per nozzle was 
most significantly reflected in the change in overall 
fibre fineness, which was reduced by 33% 
(Figure 1). The defined parameters of super-
molecular structure undrawn and drawn PLA fibres 
affected their mechanical properties (Figures 1b, 2a 
and 2b).  

The decrease in crystallinity due to the higher 
spinning temperature (220°C, Table 2) results in 
an increase in the elongation of the PLA fibres 
compared to the fibres obtained at the spinning 
temperature of 210°C, compared at the same 
drawing ratios (Figure 1b). At the same time as the 
drawing ratio increases, the elongation of the fibres 
decreases. With a lower melt dosage of 22.5 g/min 
per nozzle and a higher spinning temperature 
of 220°C, the fibres with the highest elongation were 
obtained. 

The tenacity of the fibres depends on several 
factors. The first significant effect on increasing fibre 
tenacity at break has a drawing ratio, as seen 
in Figure 1. The highest tenacity of 2.7 cN/dtex was 
achieved at fibre prepared at a lower spinning 
temperature, with lower dosing, at the maximum 
drawing ratio. 

The second significant effect on fibre tenacity has 
the spinning temperature. It can be seen in 
Figure 2a that the tenacities at the maximum 
drawing ratio and 210°C are comparable and higher 
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compared to the tenacities at 220°C and max, even 
though the higher drawing ratio was obtained with 
fibres prepared at higher spinning temperatures 
(Table 2). The different of the PLA melt dosing 
on the fibre tenacity at the spinning temperature 
of 210°C did not manifest itself. A reduction 
in the tenacity of more than 16% was found for fibres 
prepared at 220°C with a melt dosing of 22.5 g/min 
per nozzle, except for the fibre at a drawing ratio 
of 1.4. 

Young's modulus increases as the drawing ratio 
accretion. It is related to the increment in crystallinity 
in the fibres with a rising drawing ratio (Table 2).  

The effect of the different spinning temperatures was 
manifested especially at drawing ratios 1.4 and 1.6, 
as can be seen in Figure 2b. By increasing 
the spinning temperature, the Young's modulus 
decreased by 16% at a dosing of 34.7 g/min 
per nozzle and by 26% at a dosing of 22.5 g/min 
per nozzle.  

It follows from the above that, as in the parameters 
of the supermolecular structure, the most significant 
changes occur in fibres with a dosage of 22.5 g/min 
per nozzle due to the spinning temperature. 

The obtained values of the basic mechanical 
properties are in good correlation with determined 
values of their supermolecular structure parameters. 

4 CONCLUSION 

From the spinning processes (spinning speed 
of 1500 m/min) and drawing (drawing ratios =1.4, 
1.6 and max) it follows, that processes are stable, 
only at maximum drawing ratios some occasional 
fibre breaks were occurred.  

The dependencies of influence of spinning 
temperature, dosing of PLA melt per nozzle and 
uniaxial deformation (drawing) to the supermolecular 
structure parameters and basic mechanical 
properties were evaluated.  

 

 

  
a) b) 

Figure 1 Dependencies of fineness and elongation at the break on drawing ratio of PLA fibres 

 

  
a) b) 

Figure 2 Dependencies of tenacity at break and Young's modulus on drawing ratio of PLA fibres 

444

327
292 277

300

217
194 187

0

200

400

600

0 1,4 1,6 1,68

F
in

e
n

e
s
s
 

d
te

x


Drawing ratio

A1(210°C/34,7g) A2(220°C/34,7g)

B1(210°C/22,5g) B2(220°C/22,5g)

76

29

22
22

116

69

46
26

0

40

80

120

160

0,00 1,40 1,60 DRmax

E
lo

n
g

a
ti

o
n

 
%


Drawing ratio

A1(210°C/34,7g) A2(220°C/34,7g)

B1(210°C/22,5g) B2(220°C/22,5g)

1,5

2,2

2,6 2,7

1,1

1,6 1,7
1,9

0

1

2

3

4

0,00 1,40 1,60 DRmax

T
e
n

a
c

it
y
 

c
N

/d
te

x


Drawing ratio

A1(210°C/34,7g) A2(220°C/34,7g)

B1(210°C/22,5g) B2(220°C/22,5g)

32

45 49 50

28
33 37

44

0

20

40

60

80

0,00 1,40 1,60 DRmaxY
o

u
n

g
's

 m
o

d
u

lu
s
 

c
N

/d
te

x


Drawing ratio

A1(210°C/34,7g) A2(220°C/34,7g)

B1(210°C/22,5g) B2(220°C/22,5g)



Fibres and Textiles 28(4), 2021 115 

It was found that in the spinning field at spinning 
temperature of 220°C a lower total orientation 
of macromolecular chains had occurred, which 
resulted to lower tenacity fibres in comparison with 
PLA fibres at 210°C. At the same time, lower 
crystallinity had occurred in PLA fibres prepared 
at 220°C, resulting in lower Young's modulus and 
higher elongation of fibres. Fibres with a lower dose 
of 22.5 g/min/nozzle show more significant changes 
in the parameters of the supramolecular structure 
due to temperature than fibres with a higher melt 
dose of 34.7 g/min/nozzle, but the impact of PLA 
melt dosing per nozzle on the supermolecular 
structure and mechanical properties of fibres is not 
obvious. The reduction of the melt dosage from 
34.7 g/min/nozzle to 22.5 g/min/nozzle had the most 
significant effect on the change in the overall 
fineness of the fibres. 

It was also found that process of uniaxial 
deformation has significant influence on studied 
properties of PLA fibres. The highest maximum 
drawing ratio at uniaxial deformation was reached 
for fibres prepared at a spinning temperature 
of 220°C. Nevertheless, the tenacities at a spinning 
temperature of 210°C were comparable and higher 
at the maximum drawing ratio compared to 
the tenacities obtained at the maximum drawing 
ratio at 220°C. As the drawing ratio increased, all 
structural parameters increased. By comparing 
the structure of drawing fibres at the same drawing 
ratios (=1.4 and 1.6), it was found that the increase 
in the crystallinity due to the increase in the spinning 
temperature. The decrease of the orientation 
of macromolecules chains in the direction of fibre 
axis of fibre (birefringence) as well as the orientation 
of macromolecules chains in the surface layers 
of fibre (sound speed) occurs mainly by increasing 
the spinning temperature from 210°C to 220°C.  

The tenacity of drawing fibres increases in the same 
order at the same drawing ratios: 220°C/22.5 g/min 
< 220°C/34.7 g/min < 210°C/34.7 g/min < 
210°C/22.5 g/min. Reciprocally to the tenacity, 
the elongation of the fibres decreases. 

From the achieved structural and mechanical 
properties of the fibres was found, that the best 
suitable spinning process from PLA Luminy LX175 
is the spinning temperature of 210°C, dosing of PLA 
melt per nozzle 22.5 g/min. 
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