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Abstract: One of the nowadays challenges is the development of scientific sound models of knitwear 
deformations. The paper is devoted to developing an algorithm for constructing a frame model of rib 1×1 
knits stretched in the course or wale direction. In the process of uniaxial stretching, the shape of the sample 
depends on the tensile force’s orientation. A frame model of a deformed knitted structure, and an algorithm 
of construction of a mesh frame, are developed during the study. The frame model makes it possible to find 
coordinates of intermeshing points of every stitch. Then yarn characteristic points can be determined that, 
in turn, serve as input data for the construction of 3D model of rib 1×1 structure under uniaxial tensile 
deformations at the yarn level of detail. The study provides a graphical tool for formalization of geometric 
transformation that happen during 2D deformations of knitted structures, characterized by gradual change 
of the specimen’s width crosswise to the loading direction. This model is intended to become a part of a 
general deformation model of knitted fabrics.   
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1 INTRODUCTION  

Weft knitted structures such as plain and rib knits 
are the mostly used in knitwear production. One of 
the current challenges knitwear manufacturers face 
is the production of materials with predetermined 
properties, which can be achieved only with 
computer modeling and simulation. A sample’s 
geometry can be represented in simulation software 
on different levels of detail, such as macro and 
meso levels. On a macro level of textile fabric’s 
geometry, a section of a knitted fabric can be 
represented by its boundary, the surface’s 
configuration, and thickness. Creation of such a 
model is easy to realize with modern 3D modelling 
systems. Fabric modeling at the yarn level is more 
complicated due to an unevenness of knitted 
structure’s deformation. Scientifically-sound 
algorithms are needed to establish a relationship 
between the macro-level geometry of a knitted part 
and the yarn geometry of every stitch inside this 
part. 
Scientific publications of recent years reveal 
different approaches to modeling knitted structures. 
S. Vasiliadis et al. address the issues of geometric 
modeling of the structure of rib 1×1 knits [1] and the 
application of the finite element method to simulate 
its mechanical behavior in the process of stretching. 
A mesomechanical model of knitted fabric, 
proposed by Chernous et al. [2], determines how 
the tension in the knitted structure depends on its 
extension and allows assessment of its mechanical 
characteristics upon the yarn properties. Different 
approaches to modeling the structure of basic knits 
are considered in papers [3-5]. The authors of [6] 
note that the structural characteristics of the textile 

reinforcement of polymer composites significantly 
affect their mechanical properties. Boussu et al. [7] 
emphasize the importance of the correct choice of 
textile reinforcement characteristics in analyzing 
mechanical and physical parameters of textile 
performs. In [8], Tercan considers the mechanical 
properties of rib 1×1 knitted fabric composite. Do et 
al. [9] consider a nonlinear multiscale simulation of 
the mechanical behavior of functionally graduated 
knitted structures. Cirio et al. proposed a model of 
knitwear behavior at a macroscopic scale [10], 
considering the yarn-yarn contacts as persistent. 
Kaldor et al. [11] developed a method of transition 
from the geometry of a polygonal surface, 
representing the surface of a knitted product to the 
geometry of the yarn, considering dynamics of 
deformation. A high-level visual similarity of basic 
weft-knitted structures, considering the deformation 
dynamics, was achieved in studies [10] and [11]. 
Nevertheless, the results obtained in these works 
cannot be extrapolated to knitwear from different 
raw materials unless a sufficient experimental base 
is gathered. Extensive experimental data 
describing the physical and mechanical 
characteristics of different fibers and threads is 
necessary, considering their influence on the 
behavior of different knitwear structures under 
various types of deformation and loading methods. 
The studies of fluid dynamic processes occurring in 
the structure of knitwear, realized with the use of 
modern systems of CFD analysis, are considered in 
[12] and [13].  
An in-depth review of recent research in the field of 
three-dimensional modeling of the knitted 
structures shows that the problem can be solved 
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only with the use of combined approaches, 
including, on the one hand, computer modeling, and 
on the other – development of specialized empirical 
databases. 

2 SETTING OBJECTIVES 

2.1 Basic definitions 

Determination of relative position, shape, and size 
of every stitch are key points of yarn-level 3D 
modeling of knitwear structures, considering 
deformations. A momentary deformation state of a 
knitted structure should be characterized by 
peculiarities of its inherent yarn configuration under 
given loading conditions. Tensile conditions can be 
different: uniaxial stretching, biaxial stretching, 
stretching when wrapping a cylinder of a larger 
diameter, point application of force, deformation on 
a spherical surface, and others. To create a 
scientifically-sound model of knitted structure 
deformation, different types of loading should be 
analyzed. Usually, a rectangular segment of a 
knitted fabric can be divided in a certain number of 
elementary rectangles, corresponding to stitches, 
and organized in wales and courses. Those 
elementary sections change during the tensile 
process, and often their boundary doesn’t remain 
rectangular. Geometry of an elementary section 
depends on its place in the specimen and on the 
specimen’s contour, and it is changing in the 
process of deformation. Uniaxial stretching can go 
along with uniform (Fig. 1(a)) or uneven (Fig 1(b)) 
transformation of elementary contours. Yarn 
geometry for uniform transformation has been 
described in [13]. The present paper aims to 
describe the case of gradual stitch frame 
geometry’s transformation, as shown in Fig. 1(b). 
Rib knitted parts are often submitted to uniaxial 
deformation. One of the deformation types is 
uniaxial stretching of a plane part, fixed between 
two clamps. This study develops a frame model of 
rib 1×1 knit under uniaxial wale wise and course 
wise stitching, suitable to imitate the processes of 

knitted fabric stretching in a tensile testing machine 
using strip method. In this study we consider 
mechanisms of transformation of a knitted structure 
under the action of stretching efforts, which are 
characteristic for so-called conventionally non-
elastic yarns. During the knitting process, they are 
stretched by no more than 2%. In the process of 
operation of the products, the stretching of such 
threads usually does not happen. 
Requirements for geometric objects representing 
the central line of the thread and its cross-sections 
are formulated by Bobrova et al. [14]. A frame 
model of knitwear suggested in [15] forms a 
mathematical description of the transformation of 
knitwear structural characteristics during the 
deformation process. 

2.2 Variables and designations 

Considering the heterogeneity of real knitted fabric 
geometry, some assumptions should be made from 
the very beginning. We assume that a knitted 
sample has a rectangular shape in an undeformed 
state, when laid out on a plate horizontal surface 
and consists of m × n elementary rectangular 
sections, arranged in wales and courses, 
corresponding to the knitted stitches. Then m is the 
number of wales in the specimen (including the 
wales of both purl and knit stitches) and n is the 
number of courses. For both wale wise (Fig. 2(a)) 
and course wise (Fig. 2(b)) stretching we take into 
consideration only lines of stitches in the 
operational part of the specimen (between clamp’s 
lines). The length of the sample L, designates its 
size along the stretching direction. Width, W is the 
size of the sample in the direction, perpendicular to 
stretching. We assume also, that during the tensile 
process the boundary of the specimen stays 
symmetric relative to its central vertical cv and 
horizontal ch axes (Fig. 2(c)). In Fig. 2c a 
transformation of 2D boundary of a rectangular 
specimen of a knitted fabric uniaxial deformation is 
shown. 

 

 
       (a) (b) 

 

Figure 1 Transformation of knitted specimen’s contour with uniform (a) and uneven (b) changing of separate stitchs’ 
boundaries 

Fibres and Textiles 29(2) 54



    
a b c 

 

Figure 2 Transformation of 2D shape of a knitted fabric specimen under uniaxial deformation: basic size designation for 
walewise (a) and coursewise (b) stretching; transformation of the boundary of the rib 1×1 knit specimen (c); operational 
stitches spacing for corsewise (d, f) and walewise (e, g) stretching 

 

 
(a) (b) 

 

 

       (c) (d) (e) 
 
Figure 3 Location of intermeshing points in knitted structures: plain (a) and 1×1 rib knit (b) 
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Before the application of tensile forces, a 
specimen’s width equals W0 and its length L0. In a 
certain deformation state t the length of the 
specimen can be designated as Lt. To simulate the 
transformation that happens during a strip-method 
tensile test, it should be taken into consideration 
that the width of the specimen Wt varies along its 
length. Let Wtc is the width of a line of stitches, 
situated at the level of its horizontal central line ch 
(Fig. 2(c)). Figure 2(d) and 2(f) show designation of 
the operational distance between adjacent wales of 
the same layer of stitches for course wise 
stretching. Analogously Figure 2(e) and 2(g) show 
these structure characteristics for the case of wale 
wise stretching. 
In Fig. 3(a) an elementary section of the fabric, 
bounded by a rectangle with vertices at points P1, 
P2, P3, and P4, corresponds to a stitch Si, j. In the 
deformation process, the unevenness of stretching 
explains that the geometry of the boundaries of 
elementary sections changes and may differ from 
the rectangular form. It is proposed to use the 
term elementary limiting contour Si, j to designate 
the quadrilateral P1 P2 P3 P4. For an undeformed 
plain knitted structure, the elementary limiting 
contour of a loop has the form of a rectangle. Its 
width equals the wale spacing, A, and its height is 
the course spacing, B. In the context of modeling 
the structural characteristics of knitwear, it is 
possible to use the term intermeshing points for the 
imaginary points, located in the centers of the loop 
intermeshing zones, where it is connected with the 
adjacent stitches, and the quadrilateral with 
vertices at these points – the elementary inner 
contour (ui,j vi,j ui-1,j vi-1,j, Fig. 3(a)). Each stitch has 
four intermeshing points. These points are the 
vertices of its inner elementary contour. Fig. 3(a) 
shows the location of the structural elements of the 
plain knit frame model, and Fig. 3(b), respectively, 
the structural elements of the rib 1×1 frame model. 
The wales of the technical face are marked as k.s. 
(knit stitch), and the reverse ones as p.s. (purl 
stitch).  Rib 1×1 knit structure contains alternating 
along the course knit and purl stitches as shown in 
Figure 3 (b,c,d,e). In Fig. 3(b) for convenience, the 
structure is shown in the deformation state, 
characterized by the elimination of the mutual 
overlapping of knit and purl loop wales.  In the 
undeformed state an overlapping of purl stitches by 
knit stitches occurs and we see usually only 
stitches of one layer (Fig. 3(c)). During course wise 
stretching the overlapping slides down as shown in 
Figure 3(d) and 3(e). The stretching of a rib 1x1 
knit, made of a non-elastic yarn, could be divided 
into 3 main stages: unfolding, yarn redistribution, 
and yarn elongation before destruction. 
Operational deformation belongs to the first 
(unfolding) stage. During course wise stretching 
distance between the same points of adjacent 
stitches of the same layer, At increases gradually 

(Fig. 3(d), 3(e)). However, the width of the loop, As 
doesn’t grow at the first stage. We assume that in 
the free, undeformed state As=At=A0 (Fig. 3(c)). It 
can be assumed as well, that the stage of unfolding 
can be determined by meeting condition (1). And 
condition (2) holds for both: yarn redistribution and 
yarn elongation stages. 

𝐴𝑡 ≤ 2𝐴0 (1) 
𝐴𝑡 > 2𝐴0 (2) 

It can be assumed also, that when the condition (2) 
is met, the width of knit stitches As equals to the 
width of purl stitches and condition (3) is met. 

𝐴𝑆 =
𝐴𝑡
2

 (3) 
 
For mathematical description of the co-ordinates of 
the intermeshing points, the width of the 
elementary inner contour can be found as half 
elementary limiting contour width, as shown in 
Figure 3(e). 

3 RESULTS AND DISCUSSION 

A frame model of stretching provides a method to 
determine coordinates of vertices of elementary 
limiting and elementary inner contours of particular 
stitches of the knitwear sample after applying 
tensile forces. Their construction involves the use of 
such a set of input data: length of the sample at the 
moment of modeling, Lt, initial length L0 and width 
W0 of the sample, mm; wale spacing A0 and course 
spacing B0, mm, measured in a free state, number 
of wales m and courses n in the part of the sample, 
fixed between the lines of the tensile forces of 
application, minimal width Wtc.  
The main goal of this study is to provide an 
appropriate graphical tool for the formalization of 
the process of 2D deformation for the cases, when 
stretching in one direction evokes a gradual 
shrinkage in the crosswise size.  In the formalization 
study the minimal width Wtc for a certain 
deformation state t can be assessed experimentally 
as well as the numbers of stitches in wales and 
courses of the specimen. For future development of 
the model it can be calculated as it was suggested 
in paper [16]. The change in the sample’s shape 
depends on the way the tensile force is applying. 
Figure 4 shows rib 1×1 knit samples in the process 
of walewise (Fig. 4(a)) and coursewise (Fig. 4(b)) 
stretching.  
We assume that the coordinate system is located 
in the geometric center of the sample. Another 
assumption is taken that the change in size and 
configuration of the elementary contours occurs 
symmetrically to the central axes ch and cv (Fig. 
2(c)). For wale wise stretching equations (4) and 
(5) can be written down.
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(a) (b) 

Figure 4 Changing of geometrical parameters of samples of 1×1 rib knits while wale wise (a) and course wise (b) 
stretching 

 

𝐴𝑡𝑐 =
2𝑊𝑡𝑐

𝑚
 (4) 

𝐵𝑡𝑐 =
𝐿𝑡
𝑛

 (5) 

For course wise stretching equivalences (6) and (7) 
can be used. 

𝐴𝑡𝑐 =
2𝐿𝑡
𝑚

 (6) 

𝐵𝑡𝑐 =
𝑊𝑡𝑐

𝑛
 (7) 

The fourth step of the algorithm involves 
determining the length of curves approximating the 
stretching-oriented sides of the elementary 
contours. When wale wise stretching, the lines Uj 
and Vj, oriented in the loading direction, take the 
form of arcs (Fig. 5(a)). Lines Ci are oriented along 
the stretching direction in the case of course-wise 
stretching. They can be described as second-order 
Bezier curves (Fig. 5(b)). The radii of the arcs Uj 
and Vj can be found by formula (8). 

𝑟𝑢𝑗 =
(ℎ∗)2 + ∆𝑤𝑢𝑗

2

2∆𝑤𝑢𝑗

, (8) 

where h* is the half length of the deformed sample 
h*=Lt/2 (Fig. 5(a)); ∆wuj is the height of the arc 
segment Uj (Fig. 5a). 
For the arc segments indicated in Fig. 1 and Fig. 3 
as Vj in expression (9) the subscript of the variable 
∆w changes from u to v. 
We can write that for each loop wale j the length of 
the arc Luj 

𝐿𝑢𝑗 =
𝜋𝑟𝑢𝑗𝛼𝑢𝑗

180
, (9) 

where ruj – radius of the arc Uj and αuj is its central 
angle. 
The equation of the Bezier curve has the form (10). 

𝑃(𝑢) =∑(
𝑞
𝑖
)

𝑞

𝑖=0

𝑢𝑖(1 − 𝑢)𝑞−𝑖𝑃𝑖 (10) 

This provides realistic 3D modeling of knits 
deformation (Fig 6). 
 

 
                                               (а)                                                                                              (b) 
Figure 5 Mesh frame of the sample stretched along the loop wales (a) and courses (b)
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(a) (b) 

Figure 6 Mesh frame and 3D model of the specimens of rib 1×1 knit, stretched along the loop wales (a) and courses (b) 
 
In the coordinate system of the sample for each 
series i∈ [0… .n / 2] there are points T1i (x1i, y1i), 
T2i (x2i, y2i), T3i (x3i, y3i), which define the curve 
(Fig. 4(b) ), limiting the zones of a particular course. 
Coordinates of these points can be found using the 
following mathematical expressions: 

𝑥1𝑖 =
𝐴𝑚𝑎𝑥

2
; 𝑦1𝑖 = 𝑖𝑊𝑒𝑙2𝑚𝑖𝑛

+
𝑊𝑒𝑙2𝑚𝑖𝑛

2
 (11) 

𝑥2𝑖 = ℎ∗; 𝑦2𝑖 = 𝑖𝑊𝑒𝑙2𝑚𝑖𝑛
+
𝑊𝑒𝑙2𝑚𝑖𝑛

2
 (12) 

𝑥3𝑖 = ℎ∗; 𝑦3𝑖 = 𝑖𝐵 +
𝐵

2
 (13) 

Each curve's Ci, length Lci can be determined using 
special algorithms embedded in universal 
computer-aided design systems. 
The next, fifth step of the algorithm involves 
determining the lengths of the elementary curves.  
Then, for each intermeshing point lying on the 
curve, processed at the current step of the 
algorithm, the transition from its parameters to the 
coordinates is performed using special functions. 
The use of the above algorithm allows considering 
the peculiarities of transforming the knitted structure 
in the process of stretching along the wales and 
courses to implement three-dimensional modeling 
systems that provide the ability to display the 
dynamics of deformation of knitwear under tensile 
forces. 

4 CONCLUSIONS 

The development and production of materials with 
predetermined properties is one of the current 
challenges facing knitwear manufacturers. This 
task can be resolved only using computer modeling 
and simulation. Analysis of scientific publications in 
the field of three-dimensional modeling of knitted 
structures deformation shows that it can be solved 
only with the use of combined approaches, 
including, on the one hand, computer modeling, and 
on the other - specialized empirical databases. A 
geometric model providing an algorithmic basis for 
mathematical description of the yarn topology of 
stretched specimens has been developed. During 
the study, an algorithm for constructing a mesh 
frame of 1×1 rib knits stretched in one of the 
orthogonal directions is proposed. The frame model 
rib 1×1 uniaxial stretching and the algorithm of 
construction of a grid-frame, offered in this paper, 
form a basis for automated detection of coordinates 
of characteristic points of every single stitch in a 
deformed structure. These points are used as input 
data to construct a three-dimensional model of 
deformed knitwear at the yarn scale. 
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