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ABSTRACT  

This paper investigated the prediction of the increase in unevenness of two types of yarn: Ne 30/1 CVCM 
(combed yarn Ne 30/1, 60% Cotton 40% Polyester) and Ne 30/1 COCM (combed yarn Ne 30/1 100% Cotton) 
after winding by artificial neural network (ANN) and by statistical models. Four technological winding 
parameters: the winding speed (Z1), the load on the friction discs of the yarn tensioner (Z2), the distance 
between the bobbin and the yarn guide (Z3) and the pressure of the package on the grooved drum (Z4) were 
used as the input parameters to investigate yarn unevenness after winding. The research results showed 
that by using statistical models, within the selected research range, four investigated technological 
parameters influenced the increase in unevenness of the two mentioned yarns. The regression coefficients 
represented the influence of each technological parameter on the increase in yarn unevenness: the winding 
speed parameter has the most influence on the increase in yarn unevenness with the biggest value 
coefficients b1 which was 1.2339 for the Ne 30/1 CVCM yarn and this value was 0.6996 for the Ne 30/1 
COCM yarn. Moreover, the increase in yarn unevenness predicted by ANNs obtained a higher coefficient of 
determination (R2), while the mean square error (MSE) and the mean absolute error (MAE) were lower than 
the ones predicted by statistical models. 
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INTRODUCTION 

Currently, Artificial Neural Network (ANN) is being 
widely applied in many fields, including textile and 
garment. Uster (Switzerland) has developed a fabric 
inspection system named Fabricscan. In this system, 
CCD (Change Coupled Device) cameras were used 
to scan the fabric surface. The scan signals were 
transmitted to ANN for analysis and evaluation [1, 2]. 
Samader AI. Malik et al. [3] have predicted yarn 
unevenness and tensile strength which were 
produced by ring spinning frame based on four 
different input parameters: the PES/CO blend ratio, 
twist multiplier, back roller cot hardness and break 
draft ratio by using ANN and Multiple Linear 
Regression (MLR). The built ANN has the following 
parameters: 4 - (3 - 3)2 - 1 (1 input layer with 4 
neurons, 2 hidden layers (3 neurons each) and an 
output layer with 1 neuron). The number of learning 
samples in the research was 40 samples and the 
number of test samples was 8. The results showed 
that using ANN to predict yarn unevenness and 
tensile strength achieved higher accuracy than that 
predicted by MLR. Rocco Furfiri and Maurizio Gelli [4] 
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predicted the tensile strength of yarn by ANN and 
MLR based on roving yarn. Input parameters included 
yarn count, yarn twist, mean length, average fineness 
and average strength of fibers in the roving yarn. The 
ANN was built with 3 layers: an input layer of 5 
neurons (corresponding to 5 input parameters), a 
hidden layer of 10 neurons and an output layer of 1 
neuron (corresponding to the strength of the yarn). 
The results showed that the yarn strength predicted 
by ANN was only 3% less different than this value 
measured by the real experimental strength while the 
prediction by MLR was 10% more different than in 
comparison to the experimental one. Ezzatollah 
Haghighat et al. [5] predicted the hairiness of 
PES/Viscose blended yarns by ANN and MLR based 
on the input parameters: the total draft, roving twist, 
yarn count, yarn twist, spindle speed, traveled weight, 
back zone setting, break draft, balloon control ring, 
front roller covering hardness and draft system angle. 
By comparing the parameters of coefficient of 
determination (R2), mean square error (MSE), and 
mean absolute error (MAE), the results showed that 
the prediction by ANN gave more accurate results  
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Table 1. Central value and variation range of winding parameters. 

Parameters 
Actual values Coded values 
Z1 [m/min] Z2 [cN] Z3 [cm] Z4 [N] x1 x2 x3 x4 

Top level 1200 30 18 21 +1 +1 +1 +1 
Base level Zj

0
 900 20 14 14 0 0 0 0 

Bottom level 600 10 10 7 -1 -1 -1 -1 
Variation range ΔZj 300 10 4 7 - - - - 

than that predicted by MLR. Similar results have been 
obtained by the other researchers [6, 7]. 

ANN has been applied to predict yarn quality mainly 
at the spinning stage (before winding) and achieved 
high accuracy while using traditional techniques 
(MLR models) for prediction had many errors or 
predicted results with low accuracy. Up to now, the 
application of ANN to predict the yarn quality after 
winding based on technological parameters has not 
been mentioned. 

Due to the influence of winding technology, the quality 
of yarn including the yarn unevenness after winding 
has changed in comparison to before winding [8]. For 
woven fabrics, the yarn’s unevenness will make the 
fabric look bad. Particularly for knitted fabrics, in 
addition to bad fabric appearance, the yarn 
unevenness also causes a lot of yarn breakages, 
even broken needles. The reasons for the yarn 
unevenness are very complicated: due to the raw 
materials, the spinning technology and the 
equipment, including the winding. Though it is 
impossible to eliminate yarn unevenness, reducing 
and limiting this phenomenon is important. To reduce 
the production cost, to yarn usage orientation, the 
increase in unevenness of the yarn after winding 
needs to be predicted. This paper presents the 
research results of predicting the increase in the 
unevenness of two types of yarn: the Ne 30/1 CVCM 
yarn and the Ne 30/1 COCM yarn based on four 
typical winding parameters that can be tested, 
controlled and often need to be adjusted during the 
winding process, which were the winding speed (Z1), 
the load on the friction discs of the yarn tensioner 
(Z2), the distance between the bobbin and the yarn 
guide (Z3) and the pressure of package on the 
grooved drum (Z4). The research results will 
contribute to reducing yarn production costs and 
orient the efficient use of yarn after winding.    

MATERIALS AND METHODS 

Materials 

Yarn materials: The research used two types of ring 
combed yarns produced by Vinatex NamDinh 
(Vietnam) spinning mill: Ne 30/1 CVCM yarn (60% 
Cotton, 40% PES) and Ne 30/1 COCM yarn (100% 
Cotton). 

Methods 

The winding process was performed on the winding 
model developed at Hanoi University of Science and 
Technology [9]. The Uster Tester 5 (Switzerland) was 

used to measure the yarn unevenness before and 
after winding by standard ASTM D1425M/1425M-14 
[10]. Before testing, the yarns were conditioned for 24 
hours in standard atmospheric conditions (65 ± 2% 
relative humidity and 20 ± 2°C temperature). The 
acquired results were obtained by using the built ANN 
and statistical models. 

The orthogonal experimental planning level II [11] 
was applied to set up an experimental matrix with 4 
technological winding parameters Z1, Z2, Z3, Z4. The 
range of values of the winding parameters was 
selected based on the actual survey of winding 
conventional yarns in the spinning mills and the 
allowable capacity of the winding model (Table 1). 

Statistical models of the increase in yarn unevenness 
after winding in comparison to before winding have the 
general form: 

∆U [%] = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b12x1x2 + 
b13x1x3 + b14x1x4 + b23x2x3 + b24x2x4 + b34x3x4 + b11x1

2 
+ b22x2

2 + b33x3
2 + b44x4

2, 

where: b0, b1, b2, b3, b4, b12, b13, b14, b23, b24, b34, b11, 
b22, b33, b44 - the coefficients of the model, x1, x2, x3, 
x4 - coding variables of winding parameters. 

The real variables Zj and the encoding variable xj were 
related by the formula: 

   𝑍௝ ൌ 𝑥௝∆𝑍௝ ൅ 𝑍௝
଴. (1)

The increase in yarn unevenness ∆U% was 
calculated by the formula: 

   ∆𝑈 ൌ
௎ೞି௎೟

௎೟
100 ሾ%ሿ,  (2)

where: Ut - unevenness of yarn before winding (Ut = 
9.44 % and 8.94 % for CVCM yarn and COCM yarn 
respectively), Us - unevenness of the yarn after winding 
determined according to each experiment. 

The number of experiments N with the number of 
variables k = 4 was determined by the formula N = 2k + 
n0 +2k, where, n0 is the number of experiments in the 
center (n0 = 1). Thus, N = 25. Coefficient 

k-2 k-1 2 3
α = N.2 - 2 = 25.2 - 2 = 1.414 to set up the 
experimental matrix and conduct the experiment. 

Application of artificial neural network (ANN) 

By building an ANN with arbitrary concatenation or 
testing the learning process with many different 
networks and by examining the resulting errors, we 
can choose the network with the smallest error 
[12,13]. There are many types of neural networks, the 
most classic neural network application is the 
Multilayer Perceptron (MLP) network which is used 
commonly in many research fields. 
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Figure 1. Structure of ANN model for predicting increase in unevenness of yarn.

In addition to the basic units, the ANN also has some 
general requirements on the network structure such 
as the neurons are arranged into layers, including a 
layer of input signal channels, a layer of output signal 
channels and may include several intermediate layers 
known as hidden layers. There are no connections 
between neurons on the same layer, only 
connections between neurons of two consecutive 
layers. The connections are oriented from the input to 
the output (linear network). Neurons on the same 
layer will have the same activation function. 

The ANN networks (Figure 1) predict the increase in 
unevenness of yarn after winding based on 4 winding 
parameters (winding speed Z1, the load on the friction 
discs of the yarn tensioner Z2, the distance between 
the bobbin and the yarn guide Z3 and the pressure of 
package on the grooved drum Z4) which was a form of 
MLP network. For the feedforward network, learning by 
the error backpropagation algorithm using the Sigmoid 
activation function is suitable because of its continuity 
and its values do not suddenly decrease. Furthermore, 
the derivative of a Sigmoid function can be easily 
calculated and expressed as terms of a function of the 
form Sigmoid. Since there is no certain rule to select 
the number of layers and neurons in each layer, the 
network structure is selected by the trial-and-error 
method for several networks with different numbers of 
layers and different number units in layer(s). The 
training algorithm, training parameters and activation 
function have been trained with the objective of 
minimizing the training error and better generalization 
on unseen data. For example, the number of hidden 
neurons in every layer is selected with the trial-and-
error method. A network with only 1 hidden neuron and 
one layer was started, and then the number of neurons 
and layer increased progressively and generated 
randomly in different networks. All the networks were 
trained with the data sets, and the network with the 
lowest error was selected. If the best error is still high, 
the number of hidden neurons is increased by 1. To 
avoid the overfitting effect, we chose the network with 
the lowest possible number of hidden neurons and 
acceptable error (i.e., the simplest possible network), 

which can still approximate the data. The ANN network 
structure in this study was selected by testing with 3 
different networks (3, 4, 5 hidden layers) and evaluated 
by 3 performance parameters of the models: R2 
(Determining the number of systems), MSE (mean 
squared error), MAE (means absolute error). 

The network has 3 hidden layers:  

4 - (8 - 4 - 4)3 - 1 

R3
2 = 0.9681, MSE3 = 0.0415, MAE3 = 0.1210 

The network has 4 hidden layers:  

4 - (8 - 6 - 4 - 4)4 - 1 

R4
2 = 0.9125, MSE4 = 0.1137, MAE4 = 0.1342 

The network has 5 hidden layers:  

4 - (16 - 8 - 8 - 8 - 4)5 - 1 

R5
2 = 0.9997, MSE5 = 0.0009, MAE5 = 0.0187 

In comparison:  R5
2 > R3

2 > R4
2; MSE5 < MSE3 < 

MSE4; MAE5 < MAE3 < MAE4
 

So the network with 1 input layer of four neurons (4 
winding parameters), 5 hidden layers (the number of 
neurons of the hidden layers is 16, 8, 8, 8, 4, 
respectively) and 1 output layer with the number of 
neurons is 1 (increase in yarn unevenness) has the 
highest R5

2, and the smallest MSE5, MAE5 among the 
3 tested networks and this network was chosen to 
predict the increase in the unevenness of yarn in our 
research.  

Network training 

To train the network, the supervised learning rule was 
used. Error backpropagation is a learning algorithm 
applied to adjust synaptic weight, which is a form of 
supervised learning. Currently, there is no general rule 
for selecting learning data sets, a simple way is to 
choose the learning data set which covers the entire 
possible input space. Here, the input of the algorithm 
is a set of learning data {(Zs, Ds)} where, Zs = [Z1, Z2, 
Z3... ZN] is the input vector (technological parameters) 
and Ds= [d1, d2, d3... dN] is the desired output vector 
(increase in unevenness) of the yarn determined 
according to each experiment. The learning process 
includes the following steps: 
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1. Calculate output: 

When a sample Zs = [Z1, Z2, Z3....ZN] is put on the 
network, it propagates from the input Z through the 
hidden layers Y to the output layer M. In the case of 
an ANN with one hidden layer: 

 a. Sum of input connections of the hidden 
neuron j was calculated by formula 3 [3; 
15]:

     𝑎௝ ൌ ෍ 𝑢௝௜
௜ୀଵ

𝑍௜ ൅ 𝑏௝, (3)

where: Zi - input signal i, uji - synaptic weight, bj - bias 
term connected to the j unit. 
Calculate the output of the j hidden neuron: 

𝑌௝ ൌ 𝑓൫𝑎௝൯. (4)

In case the network is designed with many hidden 
layers, the calculation method is similar, the output of 
one hidden layer will be the input of the next hidden 
layer. 
 b. Output layer M 
Input of the k output neuron: 

𝑏௞ ൌ ෍ 𝑌௝

௝ୀଵ

𝑊௞௝, (5)

in where: Wkj is the corresponding weight. 
The output value of neuron k in the output layer M is: 

𝑀௞ ൌ 𝑓ሺ𝑏௞ሻ. (6)

2. Evaluate output error: 

Calculate the error of the network E according to the 
formula: 

𝐸 ൌ
1
2

෍ሺ𝑑௞ െ 𝑀௞ሻଶ

௞

, (7)

in where: dk - the increase in unevenness determined 
by experiment, Mk - the increase in unevenness 
predicted by ANN at the k neuron in the output layer for 
the sample Zs. 

The ANN was trained by feeding the output layer with 
samples and gradually adjusting the weight 
coefficients so that the output class response would 
match the desired values. In fact, after each learning 
cycle, if E ≤ Emax, the learning process is ended, and 
the result weights are given. If E > Emax, a new 
learning epoch is restarted by returning to the first 
step in adjusting the weights Wkj and uji based on the 
principle of backpropagation error. The values of the 
synaptic weight are gradually adjusted. In our 
research, the learning process using the error 
backpropagation algorithm can be ended with two 
specified conditions: the chosen value Emax = 0.01 or 
the number of learning epochs is 300. The network 
will stop according to the first coming condition. 

Evaluation of the predictive performance of the 
models 

The prediction results of the ANN were compared to 
those predicted by statistical models by 3 
performance parameters [3]: 

The coefficient of determination represents the 
relationship between the predicted value and the 
experimental value (R2). 

Mean square error (MSE): 

𝑀𝑆𝐸 ൌ
1
𝑁

෍ሺ𝑀௞ െ 𝑑௞ሻଶ ൌ
1
𝑁

ே

௞ୀଵ

෍ሺ∆ሻଶ

ே

௜ୀଵ

, (8)

Mean absolute error (MAE): 

𝑀𝐴𝐸 ൌ
1
𝑁

෍|𝑀௞ െ 𝑑௞| ൌ
1
𝑁

ே

௞ୀଵ

෍|∆|
ே

௜ୀଵ

, (9)

In where: Mk - the increase in yarn unevenness 
predicted by ANN or statistical models, dk - the 
increase in yarn unevenness determined by experiment 
(desired value), N - number of experiments. 

RESULTS AND DISCUSSION 

Predicting increase in yarn unevenness 
by statistical model 

To determine the mathematical relationship between 
the increase in yarn unevenness after winding and 
four selected technological parameters, it was 
necessary to establish an experimental matrix and 
conduct experiments to determine yarn unevenness. 
The experimental matrix and the determined results 
of the increase in yarn unevenness ∆U % (according 
to formula 2) were presented in Table 2. 

Using the Design Expert software, we have 
calculated the regression coefficients, checked the 
coefficients according to Student's standards and 
checked the conformity of the regression equations 
according to Fisher's standards. The statistical 
models on the increase in yarn unevenness with the 
coding variables have the following forms: 

For the Ne 30/1 CVCM yarn: 
∆U1 =3.9952 + 1.2339x1 + 0.7221x2 + 0.5688x3 + 
0.6318x4 + 0.2994x2 x4 + 1.4831x3 x4 
R2 = 0.8733 

For the Ne 30/1COCM yarn: 
∆U2 = 2.2396 + 0.6996x1 + 0.3927x2 + 0.31x3 + 
0.2966x4 - 0.1394x2 x3 + 0.2869x2x4 + 0.7994x3 x4 
R2 = 0.8986 

Within the selected research range, four technological 
parameters (winding speed (x1), the load on the friction 
discs of the yarn tensioner (x2), the distance between 
the bobbin and the yarn guide (x3) and the pressure of 
the package on the grooved drum (x4) influence the 
increase in the unevenness of the two mentioned 
yarns. The regression coefficients represented the 
influence of the technological parameters on the 
increase in yarn unevenness. The winding speed 
parameter has the most influence on the increase in 
yarn unevenness (the coefficients b1 = 1.2339 (in the 
∆U1 model), b1 = 0.6996 (in the U2 model) mean the 
biggest values), followed by the influence of load x2 
(coefficient b2 < b1 in models ∆U1, ∆U2).
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Table 2. Experimental matrix and the results of determining the increase in yarn unevenness ∆U %. 

N0 x0 x1 x2 x3 x4 Z1 Z2 Z3 Z4 
Ne 30/1 CVCM Ne 30/1 COCM 

∆U1 [%] ∆U2 [%] 
1 + - - - - 600 10 10 7 1.8 1.23 
2 + + - - - 1200 10 10 7 5.72 3.58 
3 + - + - - 600 30 10 7 3.6 2.01 
4 + + + - - 1200 30 10 7 6.07 3.42 
5 + - - + - 600 10 18 7 1.17 0.78 
6 + + - + - 1200 10 18 7 2.85 2.07 
7 + - + + - 600 30 18 7 2.75 1.28 
8 + + + + - 1200 30 18 7 2.97 1.79 
9 + - - - + 600 10 10 21 1.06 0.11 

10 + + - - + 1200 10 10 21 2.54 0.89 
11 + - + - + 600 30 10 21 3.71 2.28 
12 + + + - + 1200 30 10 21 3.81 2.35 
13 + - - + + 600 10 18 21 4.03 2.46 
14 + + - + + 1200 10 18 21 7.31 3.69 
15 + - + + + 600 30 18 21 5.03 2.8 
16 + + + + + 1200 30 18 21 11.03 5.15 
17 + 0 0 0 0 900 20 14 14 3.92 2.27 
18 + α 0 0 0 1324 20 14 14 5.08 3.28 
19 + -α 0 0 0 475 20 14 14 1.17 0.45 
20 + 0 α 0 0 900 34.14 14 14 4.77 3.02 
21 + 0 -α 0 0 900 5.86 14 14 3.39 1.9 
22 + 0 0 α 0 900 20 19.65 14 4.87 3.24 
23 + 0 0 -α 0 900 20 8.34 14 3.07 1.79 
24 + 0 0 0 α 900 20 14 23.9 4.45 2.91 
25 + 0 0 0 -α 900 20 14 4.1 3.71 1.24 

Table 3. The actual and predicted results of the increase in unevenness of Ne 30/1 CVCM yarn by ANN.  

N0 
∆U1 [%] 

 

Figure 2. Performance of ANN model for the increase in yarn unevenness of Ne 30/1 CVCM yarn. 

Experiments ANN 
1 1.8 1.8027 
2 5.72 5.7445 
3 3.6 3.5868 
4 6.07 6.0761 
5 1.17 1.1325 
6 2.85 2.8493 
7 2.75 2.7335 
8 2.97 2.9695 
9 1.06 1.0510 

10 2.54 2.5266 
11 3.71 3.6915 
12 3.81 3.8355 
13 4.03 4.0110 
14 7.31 7.325 
15 5.03 5.0354 
16 11.03 10.904 
17 3.92 3.9111 
18 5.08 5.0986 
19 1.17 1.1458 
20 4.77 4.7583 
21 3.39 3.4130 
22 4.87 4.8942 
23 3.07 3.0788 
24 4.45 4.438 
25 3.71 3.7061 

Predicting increase in yarn unevenness 
by ANN 

The software "Prediction of yarn product quality after 
winding" was established. The software was written 
in Python language. Its capacity was 656 MB and it 
runs on a Windows environment. The prediction 
results of the increase in yarn unevenness provided 
by this software based on the set of learning data 
(∆U1, ∆U2 with 25 experiments which were used in 
the above statistical models) were presented in Table 
3 and Table 4 and the graphs on Figures 2 and 3. 

It can be seen in Figure 2 and Figure 3 above, that 
MLP models could approximate accurately the 
increase in yarn unevenness with very small 
differences between the actual values (the blue line) 
and the estimated values (the red line). Thus, the 
outputs of the network have almost coincided with the 
experimental values. 

The performance was further assessed with the 
following measures: coefficient of determination (R2), 
MSE (Mean Square Error), MAE (Mean Absolute 
Error). The numerical errors were collected in Table 
5.
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Table 4. The actual and predicted results of the increase in unevenness of Ne 30/1 COCM yarn by ANN. 

N0 
∆U2 [%] 

 

Figure 3. Performance of ANN model for the increase in unevenness of Ne 30/1 COCM yarn. 

Experiments ANN 
1 1.23 1.3648 
2 3.58 3.6340 
3 2.01 2.2282 
4 3.42 3.4864 
5 0.78 0.7809 
6 2.07 2.1865 
7 1.28 1.3162 
8 1.79 1.8497 
9 0.11 0.1645 

10 0.89 0.8961 
11 2.28 2.5374 
12 2.35 2.4137 
13 2.46 2.6677 
14 3.69 3.7911 
15 2.8 2.8797 
16 5.15 5.0074 
17 2.27 2.3645 
18 3.28 3.3000 
19 0.45 0.5441 
20 3.02 3.1038 
21 1.9 2.0280 
22 3.24 3.2621 
23 1.79 2.0198 
24 2.91 2.9480 
25 1.24 1.3032 

Table 5. The performance of predicting the increase in yarn unevenness of the models compared to the statistical model. 

Parameters 
Ne 30/1 CVCM Ne 30/1 COCM 

Statistical Model ANN Statistical Model ANN 
R2 0.8733 0.9997 0.8986 0.9893 

MSE 0.6649 0.0009 0.3134 0.0138 
MAE 0.6469 0.0187 0.1643 0.095 

Table 6. Experimental results and prediction of ANN with testing dataset. 

Experiments 
Z1 
[m/min] 

Z2 
[cN] 

Z3 
[cm] 

Z4 
[N] 

The increase in yarn unevenness 
Ne 30/1 CVCM yarn Ne 30/1 COCM yarn 

Experiments 
Statistics 

Model 
ANN Experiments 

Statistics 

Model 
ANN 

1 700 20 12 7 3.18 2.99 3.02 1.68 1.72 1.56 
2 900 10 10 7 4.13 3.86 4.10 3.36 2.19 3.17 
3 600 30 10 4,1 3.81 3.69 3.92 2.13 2.08 1.97 
4 1200 10 15 7 4.03 3.95 4.19 2.80 2.45 3.04 
5 1000 10 15 14 4.24 3.83 4.31 2.46 2.19 2.57 
6 800 15 14 14 3.07 3.22 2.95 1.23 1.81 1.23 
7 800 14 10 14 2.65 2.58 2.60 1.12 1.38 1.31 
8 900 10 12 4,1 4.13 3.57 3.84 2.91 2.17 2.64 
9 700 12 14 7 2.12 2.20 2.10 1.34 1.39 1.10 
10 1000 10 12 4,1 4.13 3.98 4.20 3.02 2.41 2.91 
11 1000 12 10 7 4.77 4.35 4.92 3.36 2.47 3.39 
12 800 20 10 14 2.86 3.02 3.12 1.45 1.70 1.34 
MAE 0.222 0.124  0.439 0.148 
MSE 0.073 0.022  0.313 0.028 

 

  
(a) (b) 

Figure 4. Testing graph of ANN model for ∆U [%] of: (a) Ne 30/1 CVCM yarn, (b) Ne 30/1 COCM yarn.
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Table 4 shows that predicted results by ANN have an 
R2 value higher than that one given by the statistical 
model: 0.9997 > 0.8733 for Ne 30/1 CVCM yarn and 
0.9893 > 0.8986 for the Ne 30/1 COCM yarn. 
Moreover, the MAE and MSE values determined by 
ANN were lower than those predicted by statistical 
models, with MAE values 0.0187 < 0.6469 for Ne 30/1 
CVCM yarn and 0.095 < 0.1643 for Ne 30/1 COCM 
yarn and with   MSE values: 0.0009 < 0.6649 for Ne 
30/1 CVCM yarn and 0.0138 < 0.3134 for Ne 30/1 
COCM yarn. The results show that the increase in 
yarn unevenness predicted by ANNs was more 
accurate than that predicted by statistical models. 
However, predictions by ANNs do not point out the 
influence of the factors on the results. 

The performance of the built ANN model was further 
assessed by testing a data set of 12 experiments 
which were used for model testing and did not match 
with the learning data set, in which the technological 
parameters were selected in the defined research 
range. The test results are presented in Table 6. The 
graphs show the test results and the predicted values 
by the built ANN model are shown in Figure 4. 

The test results of the ANN were accepted as good 
because the MAE and MSE errors were small which 
were 0.124; 0.022 for Ne 30/1 CVCM yarn and 0.148; 
0.028 for Ne 30/1 COCM yarn. These results 
demonstrated that the built ANN model including 1 
input layer, 5 hidden layers and 1 output layer 
obtained a good performance, and it was appropriate 
for determination of the increase in yarn unevenness. 
With the test set, the results confirmed that the 
predicting by using ANN has smaller MAE, and MSE 
values (achieving higher accuracy) than these of 
statistical models. 

CONCLUSIONS 

1. In this study, the increase in unevenness of two types 
of yarn (Ne 30/1 CVCM, Ne 30/1 COCM) after winding 
was successfully predicted by statistical models and by 
artificial neural network (ANN) based on four winding 
technological parameters: Winding speed, the load on 
the friction discs of the yarn tensioner, the distance 
between the bobbin and the yarn guide and the 
pressure of package on the grooved drum. The ANN 
structure to predict the increase in yarn unevenness 
after winding has been built with 1 input layer, 5 hidden 
layers and 1 output layer. Among them, there were 4 
neurons in the input layer which corresponded to 4 
technological winding parameters, the number of 
neurons in the five hidden layers was 16, 8, 8, 8, and 4 
respectively and the number neurons of in the output 
layer were 1, which was the increase in yarn 
unevenness value. 

2. The coefficient of determination (R2) of ANN 
models reached 0.9893; 0.9997 for Ne 30/1 CVCM 
yarn and Ne 30/1 COCM yarn, respectively which 
were higher than this parameter predicted by 

statistical models which were only 0.8733; 0.8986 for 
Ne 30/1 CVCM yarn and Ne 30/1 COCM yarn, 
respectively. Meanwhile, the parameters MAE and 
MSE predicted by ANN were smaller than those 
predicted by statistical models. That proves, 
predicting by ANN achieved higher accuracy than 
predicting by statistical models. However, predicting 
by statistical models can see the degree of influence 
of each factor on the predicted results. 
3. In actual production, if it is found difficult to apply 
statistical models to predict the increase in yarn 
unevenness after winding, because the accuracy is 
low, and the results may be influenced by many 
factors, we should use ANN. However, predicted by 
ANN will not provide the influential degree of each 
factor on the results.  
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