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ABSTRACT  

We present a bicontinuous, minimal surface (the helicoid) as a scaffold on which to define the topology and 
geometry of yarns in a weft-knitted fabric. Modeling with helicoids offers a geometric approach to simulating 
a physical manufacturing process, which should generate geometric models suitable for downstream 
analyses. The centerline of a yarn in a knitted fabric is specified as a geodesic path, with constrained 
boundary conditions, running along a helicoid at a fixed distance. The shape of the yarn’s centerline is 
produced via an optimization process over a polyline. The distances between the vertices of the polyline are 
shortened and a repulsive potential keeps the vertices at a specified distance from the helicoid. These 
actions and constraints are formulated into a single “cost” function, which is then minimized. The yarn 
geometry is generated as a tube around the centerline. The optimized configuration, defined for a half loop, 
is duplicated, reflected, and shifted to produce the centerlines for the multiple stitches that make up a fabric.  
The approach provides a promising framework for estimating the mechanical behavior/properties of weft-
knitted fabrics.  Fabric-level deformation energy may be estimated by scaling the helicoid scaffold, computing 
new yarn paths, determining the amount of ensuing yarn stretch, and computing the total amount of yarn 
stretching energy.  Computational results are calibrated and verified with measurements taken from actual 
yarns and fabrics. 
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INTRODUCTION 

The calculus of variations is the cornerstone of 
classical mechanics, elasticity theory, and modern 
economics. When physical models are formulated as 
optimization problems, the equations governing 
motion, stretching or bending describe critical points 
of the objective function [8]. When the objective 
depends on geometric quantities, the minima, 
maxima, and other extrema are likewise geometric. 
Functionals of length lead to geodesic equations 
(shortest length), while functionals of area lead to 
minimal surfaces. Soap bubbles, for instance, 
minimize their area subject to a volume constraint 
leading to Plateau’s classic rules for foams [14]. 

Since minimal surfaces are the solutions to many 
extremal problems in physics, we posit that they may 
be used to define the topology and shape of yarns in 
a weft-knitted fabric. In previous work, we 
demonstrated, with physical prototypes, how yarns of 
a weft-knitted fabric may lie on a scaffolding of 
alternating left- and right-hand helicoids, a type of 
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minimal surface, with the form of the helicoids 
producing the characteristic spatial relationships 
between the yarns [7]. Here, we summarize the 
mathematics and algorithms that create geometric 
models of the yarns making up a weft-knitted fabric, 
which exploit the lattice-like structural features of 
bicontinuous helicoid surfaces. See Wadekar et al. 
[18,20] for more details. The centerline of the yarn is 
specified as a geodesic path, with constrained 
boundary conditions, running along a helicoid at a 
fixed distance. The yarn geometry is then generated 
as a tube around the centerline. The helicoid 
therefore acts as a scaffold on which to define the 
shape of the yarns and their intertwinings. 

The shape of a yarn’s centerline is produced via an 
optimization process over a polyline [21]. The polyline 
is initially placed over a helicoid in the approximate 
configuration that will define a half loop of a stitch. The 
distances between the vertices of the polyline are 
shortened and a repulsive potential keeps the 
vertices at a set distance from the helicoid. In 
addition, the locations of the polyline’s endpoints are 
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constrained. This process effectively models the 
shrinking of the initial polyline, while performing 
collision detection/avoidance with the scaffold 
surface, producing a geodesic path along the 
helicoid. These actions and constraints are 
formulated into a single “cost” function, which is then 
minimized. The optimization process modifies the 
vertices to produce a minimum cost configuration that 
balances the inter-vertex stretching cost with the 
repulsive cost from the helicoid. This configuration, 
defined for a half loop, is then duplicated, reflected, 
and shifted to produce the centerlines for the multiple 
stitches that make up a fabric. 

Surface scaffolds have been explored in the context 
of weft-knitting because they are able to produce 
physically plausible geometric models of yarns. 
Additionally, when keeping the yarn models on 
opposite sides of the scaffold surface, the form of the 
surface provides the critical function of maintaining 
the topology and spatial relationships between the 
yarns; thus removing the need to compute yarn-yarn 
intersections. An even more important feature of this 
approach is that it provides a framework for analyzing 
the mechanical properties of knitted fabrics. 
Deformations may be applied to the underlying 
scaffold, while the yarns stay in contact with the 
deformed surfaces. Energies of deformation are then 
computed at the yarn level to derive the mechanical 
properties of the fabric as a whole. Since these 
mechanical properties are computed via the 
geometric solutions furnished by the supporting 
surfaces, the scaffold-surface approach enables an 
efficient analysis technique that should support rapid 
exploration of the fabric’s design space. This 
approach provides a potential alternative to compute-
intensive FEM methods for estimating the mechanical 
behavior of knitted fabrics. 

RELATED WORK 

The first published system to model and visualize 
complete knitted fabrics was developed by Eberhardt 
et al. [4,13]. Their system (KnitSim) accepts Stoll 
knitting machine commands and simulates the 
knitting process to produce an explicit topological 
representation of a knitted fabric, which can then be 
used to generate a 2D geometric layout of the fabric. 
Two decades later, a system with similar capabilities 
was developed by Counts [3]. Lin et al. [9] developed 
a modeling approach/system that works on various 
scales to model the yarns in and predict the 
mechanical properties of textiles, including knitted 
fabrics. 

In ground-breaking work Kaldor et al. [5,6] simulated 
complete swatches and articles of clothing consisting 
of knitted fabrics by modeling the geometry and 
physics of individual yarns in these items. This work 
was extended by Yuksel et al. [23] and Wu et al. [22] 
to produce Stitch Meshes, an approach to generating 
Kaldor-style, yarn-level geometric models of knitted 

clothing from polygonal models that represent the 
clothing’s surface. Cirio et al. [2] define a topological 
representation of knits consisting of a limited set of 
stitches. They developed a mechanical model based 
on the representation for the simulation of knitted 
clothing, which has been incorporated into a hybrid 
yarn/triangle model [1]. Liu et al. [10,12] perform 
Finite Element Modeling simulations of knitted fabrics 
based on solid yarn-level geometric models [19].  
Others [11,15,17] utilize a homogenized model to 
simulate the mechanical behavior of knits. 

Our work is novel compared to previous efforts in that 
it utilizes a helicoid-like bicontinuous surface to define 
the geometry and topology of yarns in a weft-knitted 
fabric. More importantly, it provides a unique 
approach for estimating the stretching energy of the 
fabric. 

YARN MODEL DEFINITION 

Helicoid scaffold model 

The bicontinuous surface formulation employed as a 
yarn model scaffold is defined over u and v as a 
surface S such that 

 𝑆(u, v ) = [𝑥, 𝑦, 𝑧] (1) 

 

where x and y are independent variables, and z is the 
set of values that satisfy Equation 2. 

 tan z = sin 𝑥 / cos y (2) 

 

Equation 2 defines a trigonometric approximation to 
the triply-periodic Schwarz D (Diamond) minimal 
surface, which has been shown to model physical 
structures (e.g., liquid crystalline phases) [4].     
Equation 2 can be solved for z to produce 

 z = tan-1(sin 𝑥 / cos y) (3) 

 

which defines a single z value for every (x, y) pair.  
Scale factors can be added to Equation 3 in order to 
control the size and spacing of the helicoids, which in 
turn scale the yarn models lying on them. 

 z = tan-1(sin 𝑥 / cos y) (4) 

 

where η and ψ control the spacing between the 
central axes of the helicoid structures in the x and y 
directions. The distance between the axes is π when 
η = ψ = 1. γ controls the height of each helicoid cycle, 
with the height of one cycle being 2π when γ = 1. 
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Computing the yarn configuration 

The total configuration cost of the yarn is the sum of 
the costs computed at N −1 of the N vertices of the 
polyline that approximate it. 

 𝑬𝒕𝒐𝒕𝒂𝒍 = ∑ 𝑬𝒕𝒐𝒕𝒂𝒍
𝒊𝑵−𝟏

𝒊=𝟏  (5) 

 

The total cost associated with vertex i is given by 

 𝐸𝑡𝑜𝑡𝑎𝑙
𝑖 = 𝛼𝐸𝑙𝑒𝑛

𝑖 + 𝛽𝐸𝑑𝑖𝑠𝑡
𝑖  (6) 

 

The cost term used to shrink the yarn is 

 𝐸𝑙𝑒𝑛
𝑖 = (𝐿𝑒𝑛𝑔𝑡ℎ𝑖 −  𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ)2 (7) 

 

where Lengthi is the distance between vertex i and 
vertex i +1 and TargetLength is parameter that is 

adjusted in order to shorten the polyline. 𝑬𝒅𝒊𝒔𝒕
𝒊  

maintains the distance constraint between the 
polyline and the helicoid scaffold and is defined as 

 𝐸𝑑𝑖𝑠𝑡
𝑖 = (𝑑𝑖 − 𝑅𝑦)log (𝑑𝑖/𝑅𝑦) (8) 

 

di is the distance between vertex i and the helicoid 
scaffold and Ry is the yarn radius. The distance cost 

is only computed for di values less than Ry. The 
equation is defined in this form in order to go to infinity 
at d = 0 and to have a value and derivative of 0 at d = 
Ry. 

GENERATING GEOMETRIC MODELS 

Polylines were placed over a helicoid scaffold defined 
by Eq. 4. The cost of the polyline, as defined by Eqs. 
5 through 8, was minimized to produce a geodesic 
path on the scaffold. Tube-like geometry, with radius 
Ry, was defined around the polyline to produce solid 
geometric models of yarns in swatches of single 
Jersey, rib and garter knitted fabrics.  The surface of 
the helicoid scaffold is shown in Fig. 1 (Left). A model 
of single loop of yarn is shown in Fig. 1 (Right). The 
color-coding of the surface demonstrates that the 
yarn remains on one side of the scaffold. 

Figure 2 (Left) presents the yarn geometric model of 
an 8 x 8 swatch of stitches in a rib pattern (alternating 
columns of Knit and Purl stitches), with and without 
the helicoid scaffold. Figure 2 (Right) presents the 
yarn geometric model of an 8 x 8 swatch of stitches 
in a garter pattern (alternating rows of Knit and Purl 
stitches), with and without the helicoid scaffold. These 
results can be produced in several (5 to 10) seconds 
on a standard PC. 

 

 

                     
Figure 1. (Left) The helicoid scaffold surface.  (Right) A model of a single loop of yarn is shown with and without the associated scaffold. 

 

 

             
Figure 2. (Left) Geometric model of yarns on a rib pattern.  (Right) Geometric models of yarns in a garter pattern. 
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ESTIMATING FABRIC STRETCHING 
ENERGY 

The helicoid scaffold model for knitted fabrics 
provides a framework for estimating the mechanical 
properties of a weft-knitted fabric.  Specifically, the 
model supports the computation of the stretching 
deformation energy of the fabric.  The process is 
detailed in Figure 3. The general approach involves 
stretching the scaffold that defines the yarns in the 
fabric and computing the tensile strain energy of the 
yarns arising from the fabric stretching deformation. 

The following outlines the steps in the process of 
computing knitted fabric stretching energy.  

• Acquire force vs. displacement data for a yarn. 
Produce an all-Knit (single Jersey) fabric swatch 
from the yarn. Acquire force vs. displacement 
data for the knitted swatch.  

• Convert the force vs. displacement data for the 
yarn into energy per unit length vs. strain by 
calculating the area under the curve. 

• Convert the force vs. displacement data for the 
swatch into energy per unit swatch length vs. 
strain by calculating the area under the curve. 

• Generate the yarn-level helicoid model using the 
size parameters of the fabric’s stitches. The 
scale parameters for the loops are derived from 
the knitted swatch. (# stitches in a row/width of 
swatch; # rows/height of swatch). 

• For a given amount of fabric stretching, generate 
the associated yarn-level helicoid models with 
stretched loops by increasing the scaffold width 
by the given swatch strain values. 

• Decrease the scaffold thickness for these 
helicoid models and reoptimize the yarn path on 
the scaffold to adjust for the Poisson Effect. 

• Compute the yarn strain for the stretched model 
compared to the original undeformed yarn 
model. 

• Find the corresponding yarn energy per unit 
length for these yarn strain values using the yarn 

energy per unit length vs. strain data obtained 
earlier. 

• Multiply the yarn energy per unit length by the 
loop length obtained from the undeformed yarn 
model to produce the energy per loop. 

• Compute the final swatch energy prediction by 
multiplying the energy per loop by the total 
number of stitches in the swatch. 

• Find the energy per unit length of the knitted 
swatch using the swatch energy per unit length 
vs. strain data obtained earlier. 

• Multiply this swatch energy per unit length by the 
initial swatch length to obtain the measured 
swatch energy. 

• Compare the model-based computed swatch 
energy with the measurement-based computed 
energy. 

Acquiring force vs. displacement data 

We measured the mechanical properties of a Merino 
wool yarn (Supra Merino, Silk City Fibers, New 
Jersey) with 3.5 twists per centimeter.  Samples of the 
yarn were placed into a Shimadzu load frame, using 
capstan grips specifically suited for testing of yarns. 
The distance from grip to grip was 250 mm. The yarns 
were then pulled to breaking at a rate of 0.01 meters 
per second. This speed, which is close to the 
maximum speed for the Shimadzu load frame (max 
speed 0.016 m/s), was chosen to be as similar as 
possible to manufacturing speeds available on Shima 
Seiki weft knitting machines (minimum speed of 0.03 
meters per second). Force and displacement data 
was recorded.  See Figure 4 for the testing equipment 
and the results of measuring ten yarn samples. 

The force vs. displacement data from four jersey 
fabric samples stretched in the wale direction is 
shown in Figure 5, with the displacement normalized 
to strain (mm/mm).  It can be seen that each of the 
curves are well matched to the others, demonstrating 
consistent deformation behaviors. 

 

 
Figure 3. Process for computing fabric stretching energy using helicoid scaffolds. 
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Figure 4. (Left) Merino wool yarn loaded in capstan grips on the Shimadzu load frame. (Right) Force vs. strain data for 10 samples of 
Merino wool yarn. 

 

 

Figure 5. Stretching a single Jersey fabric with Merino wool yarn in the wale direction; (Left) experimental setup, (Right) force vs. strain 
data. 

Computing yarn and swatch deformation 
energy 

From the averaged force vs. displacement curves of 
the yarn, we can compute the force vs. strain values 
by dividing the displacement by the rest length of the 
yarn. Integrating force with respect to strain, which is 
effectively finding the area under the force vs. strain 
curve, gives us energy per unit length of the yarn. 

This is then multiplied by the yarn length to obtain the 
energy in a stretched yarn. This approach allows us 
to now measure the stretching behavior of actual 
yarns and incorporate their measured behavior in our 
computational models.  

The process of computing the measured swatch 
energy is similar to that of the yarn energy. We stretch 
the swatch in the wale direction and plot the force vs 
displacement curve for this stretching. This is then 
converted to a force vs. strain curve by dividing the 
displacement by the total wale length of the swatch at 

rest. The area under this curve gives us energy per 
unit wale length of the swatch for a given strain. 

Generating and stretching the helicoid 
model 

Given the loop scale parameters that are derived from 
the physical swatch, a yarn-level helicoid-based 
geometric model is computed using the methods 
described in previous sections and [5,6]. The shape 
of the yarn arises from its interaction with the helicoid 
scaffold.  For a fixed set of strain values, the scaffold 
is stretched by the associated scale values in the 
wale direction, and the yarn model is updated. See 
Figure 6.  In order to adjust the model for the Poisson 
Effect, the model should be scaled in the direction 
orthogonal to the plane of the fabric.  The method 
utilized to compute this scale factor is described in 
Adjusting fabric thickness section. 
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Figure 6. Stretching the helicoid yarn model in the wale direction. 

 

 
Figure 7. Effect of reducing scaffold thickness on loop shape and 
length. 

 

 
Figure 8. Scaffold thickness changes required to match the 
computed energy values to the measured values. 

Computing swatch stretch energy from 
yarn stretch energy 

The length of the yarn through the fabric model is 
calculated both before and after the model is 
stretched, providing yarn strain vs. fabric strain data, 
as seen in the upper right block of Figure 3. The 
helicoid scaffold model plays a critical role in this step, 
allowing us to determine how much the yarn deforms 
as the fabric is stretched. 

In the bottom left block of Figure 3, the experimental 
yarn strain data is combined with the computational 
yarn strain data to produce a data-derived yarn strain 

energy curve.  The computed scaffold geometric 
model tells us how much the yarn strains during fabric 
stretching, the experimental yarn strain data then 
allows us to compute the amount of energy needed 
to stretch the yarn. In the next step, the predicted 
swatch energy is computed by multiplying the length 
of a single loop, which is computed from the scaffold-
based geometric model, by the predicted yarn strain 
energy, which gives us the energy needed to deform 
a single loop of yarn as the fabric is stretched.  
Multiplying this loop-level energy by the number of 
loops in the modeled swatch produces the predicted 
total energy needed to stretch the fabric sample.   

In the final step the predicted swatch energy 
computed from the yarn-data-derived model is 
compared to the deformation energy that is based on 
the experimentally acquired swatch strain data. When 
this ratio is 1, the energy computed from our model 
exactly matches the energy that is acquired from 
measuring the associated fabric sample. 

Adjusting fabric thickness 

In our initial experiments, we produced computational 
swatch stretch energies that matched the measured 
swatch energies to within a factor of 2, except when 
the fabric strain exceeded 15%, where the ratio of 
computed and measured energy was over 6.  We 
hypothesized that the main source of this high-strain 
anomaly was the absence of accounting for the 
Poisson Effect in the stretched computational model. 
To address this deficiency, we reran our 
computational pipeline and additionally adjusted the 
scaffold thickness to model the fabric thinning that 
occurs during stretching.  See Figure 7.  For each 
strain increment the scaffold thickness was 
decreased, with the yarn geometric model being 
accordingly modified. The scaffold thickness that 
produced an exact match between the computed and 
measured swatch energies was determined. This link, 
shown with the red arrow in Figure 3, forms a 
feedback loop that guides the adjustment of the 
thickness value. 

Table 1 contains some of the derived data from this 
task, showing the percentage reduction in scaffold 
thickness needed for various strain increments to 
produce the desired exact energy matches.  Figure 8 
presents a plot of all our percentage reduction of 
scaffold thickness vs. wale strain data.  The data is 
observed to be linear with a very high R2 value of 
above 99.8% in all the cases that were tested. The 
equation of the least-squares line fit to the data in 
Figure 8 is 

 % thickness reduction=2.6 × wale strain-3.2.  (9) 

 

 

 

 

 

10



 
BREEN D., ET AL.:  GEOMETRIC AND MECHANICAL MODELING OF WEFT-KNITTED FABRICS USING HELICOID SCAFFOLDS   

 

 

Table 1. Scaffold thickness reduction required to match the measured energy for different swatch strain values. 

Swatch Strain 
[%] 

Percentage reduction in scaffold 
thickness 

Ratio of computed swatch energy 
values to measured swatch energy 

values 

5 10.05 1.00 

10 21.97 1.00 

15 35.50 1.00 

20 49.36 1.00 

 

                 
Figure 9. (Left) Generalized energy for two knit structure deformation modes. (Right) Natural curling of a single Jersey knitted fabric. 

 

The relation between the change in thickness of the 
fabric with respect to its stretching is similar to the 
Poisson Effect in solid materials. The linear 
relationship between swatch thickness reduction and 
wale strain provides encouraging evidence that our 
approach may be utilized to predict fabric deformation 
energies. 

DISCUSSION 

The helicoid-based approach to estimating 
mechanical behavior demonstrates a number of 
advantages over more conventional methods.  It 
shows promise for computing physical quantities of 
weft-knitted fabrics purely based on geometric 
calculations. Utilizing a helicoid, a type of minimal 
surface, as a scaffold for defining the topology and 
geometry of weft-knitted fabrics allows for the rapid 
calculation of yarn geometry, fabric deformation and 
deformation energy. These quickly produced results 
could support extensive exploration of the fabric’s 
design space in a short amount of time.  While the 
helicoid-based approach to estimating mechanical 
behavior of weft-knitted fabrics shows promise, it also 
clearly has several deficiencies.  The swatch-level 
stretching energy calculations completely rely on the 
change in yarn length during fabric deformation, and 
do not include yarn bending energy and friction; two 
quantities that certainly affect knitted fabric 
mechanical behavior.  It is notable though that 
experimental results can be computationally 
reproduced by just taking into account yarn stretching 
energies. It is also important to note that our results 
have been produced under low fabric strains, and it is 
anticipated that the relationship between yarn 
stretching energy and swatch stretching energy may 
change at higher strains, requiring additional model 
features and parameters for accurate prediction.  

Finally, the helicoid-based approach provides a 
qualitative framework for analyzing and 
understanding the structural properties of knitted 
fabrics. For example, the approach readily explains, 
through an energy-based analysis, the curling 
behavior of knitted fabrics (Figure 9).  Applying 
circular deformations to a single Jersey model and 
computing the total yarn stretching energy shows that 
bending backwards produces a lower energy 
configuration, compared to a flat and forward bent 
fabric; thus, explaining the natural curling behavior of 
the fabric, as seen in Figure 9 (Left).  This conclusion 
can be reached purely through a geometric 
calculation and does not require a computationally 
intensive dynamic simulation. 

CONCLUSIONS 

We have presented the mathematics and algorithms 
needed to utilize the helicoid, a bicontinuous, minimal 
surface, as a scaffold for defining the topology and 
geometry of yarns in a weft-knitted fabric. The 
geometry of a half-loop of yarn is specified as a 
geodesic path along the surface with fixed boundary 
conditions. This optimized path may be duplicated, 
reflected, and shifted to produce the centerlines for 
the multiple stitches that make up a fabric.  The 
approach provides a promising framework for 
estimating the mechanical behavior/properties of 
weft-knitted fabrics.  For example, fabric stretching 
energy may be estimated by scaling the helicoid 
scaffold, computing new yarn paths, determining the 
amount of ensuing yarn stretch, and computing the 
total amount of yarn stretching energy based on 
measurements of actual yarns.  The total computed 
swatch stretching energy has been calibrated with the 
energy needed to stretch an associated actual knitted 

Knit Side
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fabric.  Additional research is required to advance the 
method towards a deployable design tool. 
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